精英家教网 > 高中数学 > 题目详情

不等式选讲已知函数f(x)=|x-2|,g(x)=-|x+3|+m.

(1)解关于x的不等式f(x)+a-1>0(a∈R);

(2)若函数f(x)的图象恒在函数g(x)图象的上方,求m的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=|x-2a|,不等式f(x)≤4的解集为{x|-2≤x≤6}.
(1)求实数a的值;
(2)若存在x∈R,使不等式f(x)+f(x+2)<m成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•郑州一模)选修4-5:不等式选讲
已知函数f(x)=|2x-1|+|x-2a|.
(I)当a=1时,求f(x)≤3的解集;
(II)当x∈[1,2]时,f(x)≤3恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•海口二模)选修4-5:不等式选讲
已知函数f(x)=|x+1|-|x|+a.
(Ⅰ)若a=0,求不等式f(x)≥0的解集;
(Ⅱ)若方程f(x)=x有三个不同的解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=|2x-m|+m.
(Ⅰ)若不等式f(x)≤6的解集为{x|-1≤x≤3},求实数m的值;
(Ⅱ)在(Ⅰ)的条件下,求使f(x)≤a-f(-x)有解的实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=|x-2a|+|x-a|,a∈R,a≠0.
(1)当a=1时,解不等式:f(x)>2;
(2)若b∈R且b≠0,证明:f(b)≥f(a),并求在等号成立时
ba
的取值范围.

查看答案和解析>>

同步练习册答案