19£®ÒÑÖªÍÖÔ²C1£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ÀëÐÄÂÊΪ$\frac{\sqrt{6}}{3}$£¬½¹¾àΪ2$\sqrt{2}$£¬Å×ÎïÏßC2£ºx2=2py£¨p£¾0£©µÄ½¹µãFÊÇÍÖÔ²C1µÄ¶¥µã£®
£¨¢ñ£©ÇóC1ÓëC2µÄ±ê×¼·½³Ì£»
£¨¢ò£©Éè¹ýµãFµÄÖ±Ïßl½»C2ÓÚP£¬QÁ½µã£¬ÈôC1µÄÓÒ¶¥µãAÔÚÒÔPQΪֱ¾¶µÄÔ²ÄÚ£¬ÇóÖ±ÏßlµÄбÂʵÄȡֵ·¶Î§£®

·ÖÎö £¨¢ñ£©ÓÉÍÖÔ²µÄÐÔÖÊ£¬ÇóµÃaºÍcÔòÖµ£¬b2=a2-c2=1£¬ÇóµÃÍÖÔ²·½³Ì£¬ÓÉÅ×ÎïÏߵĽ¹µãÔÚyÖáÉÏ£¬Ôò$\frac{p}{2}$=1£¬ÇóµÃpµÄÖµ£¬ÇóµÃÅ×ÎïÏß·½³Ì£»
£¨¢ò£©½«Ö±Ïß·½³Ì´úÈëÅ×ÎïÏß·½³Ì£¬ÀûÓÃΤ´ï¶¨Àí¼°ÏòÁ¿ÊýÁ¿»ýµÄ×ø±êÔËË㣬¼´¿ÉÇóµÃÖ±ÏßlµÄбÂʵÄȡֵ·¶Î§£®

½â´ð ½â£º£¨¢ñ£©ÉèÍÖÔ²C1µÄ½¹¾àΪ2c£¬ÒÀÌâÒâÓÐ2c=2$\sqrt{2}$£¬
Ôòc=$\sqrt{2}$£¬ÀëÐÄÂÊe=$\frac{c}{a}$=$\frac{\sqrt{6}}{3}$£¬Ôòa=$\sqrt{3}$£¬
b2=a2-c2=1£¬
¹ÊÍÖÔ²C1µÄ±ê×¼·½³Ì$\frac{{x}^{2}}{3}+{y}^{2}=1$£¬
ÓÖÅ×ÎïÏßC2½¹µãÔÚyÖáÕý°ëÖᣬÔòÅ×ÎïÏß½¹µãFÊÇÍÖÔ²µÄC1É϶¥µã£¬F£¨0£¬1£©£¬Ôòp=2£¬
¹ÊÅ×ÎïÏßC2µÄ±ê×¼·½³ÌΪx2=4y£»
£¨¢ò£©ÓÉÌâÒâ¿ÉÉèÖ±Ïߵķ½³ÌΪ£ºy=kx+1£¬ÉèµãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=kx+1}\\{{x}^{2}=4y}\end{array}\right.$£¬µÃx2-4kx-4=0£¬ÓÉΤ´ï¶¨ÀíµÃx1+x2=4k£¬x1x2=-4£®
A£¨$\sqrt{3}$£¬0£©ÔÚÒÔPQΪֱ¾¶µÄÔ²ÄÚ£¬
Ôò$\overrightarrow{AP}$•$\overrightarrow{AQ}$=£¨x1-$\sqrt{3}$£¬y1£©£¨x2-$\sqrt{3}$£¬y2£©=x1x2-$\sqrt{3}$£¨x1+x2£©+3+y1y2£¼0£¬
Ôò16x1x2-16$\sqrt{3}$£¨x1+x2£©+48+£¨x1x2£©2£¼0£¬¼´-64-16$\sqrt{3}$¡Á4k+48+16£¼0£¬½âµÃ£ºk£¾0
Ö±ÏßlµÄбÂʵÄȡֵ·¶Î§£¨0£¬+¡Þ£©£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²¼°Å×ÎïÏߵļòµ¥¼¸ºÎÐÔÖÊ£¬Ö±ÏßÓëÅ×ÎïÏßµÄλÖùØÏµ£¬¿¼²éΤ´ï¶¨Àí£¬ÏòÁ¿ÊýÁ¿»ýµÄ×ø±êÔËË㣬¿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑÖªº¯Êýf£¨x£©=$\frac{1}{a-x£¨1-x£©}$µÄÖµºãСÓÚ1£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨-¡Þ£¬$\frac{1}{4}$£©¡È£¨$\frac{5}{4}$£¬+¡Þ£©B£®£¨-¡Þ£¬$\frac{1}{4}$£©C£®£¨$\frac{5}{4}$£¬+¡Þ£©D£®ÒÔÉ϶¼²»¶Ô

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÉèÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÇÒanÓë2SnµÄµÈ²îÖÐÏîΪ1£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏ
£¨2£©¶ÔÈÎÒâµÄn¡ÊN*£¬²»µÈʽ$\frac{1}{{{a_1}{a_2}}}+\frac{1}{{{a_2}{a_3}}}+¡­+\frac{1}{{{a_n}{a_{n+1}}}}¡Ý\frac{¦Ë}{{{a_n}^2}}$ºã³ÉÁ¢£¬ÇóʵÊý¦ËµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªº¯Êý$f£¨x£©=\frac{1}{3}{x^3}-\frac{1}{2}{x^2}-2x+5$£®
£¨¢ñ£©ÇóÇúÏßy=f£¨x£©Ôڵ㣨0£¬5£©´¦µÄÇÐÏß·½³Ì£»
£¨¢ò£©Çóº¯Êýf£¨x£©µÄ¼«Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®Èçͼ£¬¡÷O'A'B'ÊÇˮƽ·ÅÖõġ÷OABµÄÖ±¹Ûͼ£¬Ôò¡÷OABµÄÖܳ¤Îª£¨¡¡¡¡£©
A£®$10+2\sqrt{13}$B£®3$\sqrt{2}$C£®$10+4\sqrt{13}$D£®12

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®Ë«ÇúÏß$\frac{x^2}{8}-{y^2}=1$µÄ½¹µãµ½Æä½¥½üÏߵľàÀëÊÇ£¨¡¡¡¡£©
A£®$2\sqrt{2}$B£®1C£®2D£®$\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖª¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì9x2+6ax-b2+4=0£¬a£¬b¡ÊR
£¨1£©ÈôaÊÇ´Ó1£¬2£¬3Èý¸öÊýÖÐÈÎÈ¡µÄÒ»¸öÊý£¬bÊÇ´Ó0£¬1£¬2Èý¸öÊýÖÐÈÎÈ¡µÄÒ»¸öÊý£¬ÇóÒÑÖª·½³ÌÓÐÁ½¸ö²»ÏàµÈʵ¸ùµÄ¸ÅÂÊ£»
£¨2£©ÈôaÊÇ´ÓÇø¼ä[0£¬3]ÄÚÈÎȡһ¸öÊý£¬bÊÇ´ÓÇø¼ä[0£¬2]ÄÚÈÎȡһ¸öÊý£¬ÇóÒÑÖª·½³ÌÓÐʵ¸ùµÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÈôÆ½ÃæÄÚÈýµãA£¨1£¬-a£©£¬B£¨2£¬a2£©£¬C£¨3£¬a3£©¹²Ïߣ¬Ôòa=£¨¡¡¡¡£©
A£®1¡À$\sqrt{2}$»ò0B£®$\frac{{2-\sqrt{5}}}{2}»ò0$C£®$\frac{{2¡À\sqrt{5}}}{2}$D£®$\frac{{2+\sqrt{5}}}{2}»ò0$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®Ö±Ïßx=$\frac{¦Ð}{4}$ºÍx=$\frac{5¦Ð}{4}$ÊǺ¯Êýf£¨x£©=sin£¨¦Øx+¦Õ£©Í¼ÏóµÄÁ½ÌõÏàÁڵĶԳÆÖᣬÔò¦ÕµÄֵΪ£¨¡¡¡¡£©
A£®$\frac{¦Ð}{4}$B£®$\frac{¦Ð}{3}$C£®$\frac{¦Ð}{2}$D£®$\frac{3¦Ð}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸