精英家教网 > 高中数学 > 题目详情
如图,四面体ABCD中,O、E分别是BD、BC的中点,CA=CB=CD=BD=2,AB=AD=2。
(1)求证:AO⊥平面BCD;
(2)求异面直线AB与CD所成角的大小;
(3)求点E到平面ACD的距离。
解:(1)证明:连结OC
∵BO=DO,AB=AD,
∴AO⊥BD
∵BO=DO,BC=CD,
∴CO⊥BD
在△AOC中,由已知可得AO=1,CO=
而AC=2,
∴AO2+CO2=AC2
∴∠AOC=90°,即AO⊥OC

∴AB⊥平面BCD。
(2)取AC的中点M,连结OM、ME、OE,由E为BC的中点知ME∥AB,OE∥DC
∴直线OE与EM所成的锐角就是异面直线AB与CD所成的角
在△OME中,
是直角△AOC斜边AC上的中线


∴异面直线AB与CD所成角的大小为
(3)设点E到平面ACD的距离为h
=
·S△ACD=·AO·S△CDE
在△ACD中,CA=CD=2,AD=
∴S△ACD=
而AO=1,S△CDE=
∴h=
∴点E到平面ACD的距离为
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,四面体ABCD中,O是BD的中点,△ABD和△BCD均为等边三角形,
AB=2,AC=
6

(I)求证:AO⊥平面BCD;
(II)求二面角A-BC-D的大小;
(III)求O点到平面ACD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四面体ABCD中,O.E分别为BD.BC的中点,且CA=CB=CD=BD=2,AB=AD=
2

(1)求证:AO⊥平面BCD;
(2)求 异面直线AB与CD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四面体ABCD中,0是BD的中点,CA=CB=CD=BD=a,AB=AD=
2
2
a

(1)求证:平面AOC⊥平面BCD;
(2)求二面角O-AC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四面体ABCD的各个面都是直角三角形,已知AB⊥BC,BC⊥CD,AB=a,BC=a,CD=c.
(1)若AC⊥CD,求证:AB⊥BD;
(2)求四面体ABCD的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,四面体ABCD中,O、E分别是BD、BC的中点,AO⊥平面BCD,CA=CB=CD=BD=2.
(1)求证:面ABD⊥面AOC;
(2)求异面直线AE与CD所成角的大小.

查看答案和解析>>

同步练习册答案