精英家教网 > 高中数学 > 题目详情
5
+
7
与1+
15
的大小关系是
 
分析:利用分析法验证大小,即两个实数的平方,化简(去掉相同的数值)再平方,直到明显结果即可.
解答:解:∵4
15
,∴35>19+4
15

2
35
> 4+2
15

也就是12+2
35
>16+2
15

即:5+7+2
35
1+15+2
15

5
+
7
>1+
15

故答案为:>
点评:本题考查两个数的大小,应用分析法,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某研究机构为了研究人的脚的大小与身高之间的关系,随机抽测了20人,得到如下数据:
序      号 1 2 3 4 5 6 7 8 9 10
身高x(厘米) 192 164 172 177 176 159 171 166 182 166
脚长y( 码 ) 48 38 40 43 44 37 40 39 46 39
序      号 11 12 13 14 15 16 17 18 19 20
身高x(厘米) 169 178 167 174 168 179 165 170 162 170
脚长y( 码 ) 43 41 40 43 40 44 38 42 39 41
(1)若“身高大于175厘米”的为“高个”,“身高小于等于175厘米”的为“非高个”;“脚长大于42码”的为“大脚”,“脚长小于等于42码”的为“非大脚”,请根据上表数据完成下面的2×2(2)联列表:
高  个 非高个 合  计
大  脚
非大脚 12
合  计 20
(2)根据题(1)中表格的数据,若按99%的可靠性要求,能否认为脚的大小与身高之间有关系?

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•韶关一模)为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
喜爱打篮球 不喜爱打篮球 合计
男生 20 5 25
女生 10 15 25
合计 30 20 50
(1)用分层抽样的方法在喜欢打蓝球的学生中抽6人,其中男生抽多少人?
(2)在上述抽取的6人中选2人,求恰有一名女生的概率.
(3)为了研究喜欢打蓝球是否与性别有关,计算出K2≈8.333,你有多大的把握认为是否喜欢打蓝球与性别有关?下面的临界值表供参考:
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别为F1、F2,点P在椭圆上且在x轴上方,|PF1|=7,|PF2|=5,cos∠F1F2P=
1
5

(1)求椭圆C的方程;
(2)抛物线D:y2=4mx(m>0)过点P,连接PF2并延长与抛物线D交于点Q,M是抛物线D上一动点(且M在P与Q之间运动),求△MPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某研究机构为了研究人的脚的大小与身高之间的关系,随机抽测了20人,得到如下数据:
序      号 1 2 3 4 5 6 7 8 9 10
身高x(厘米) 192 164 172 177 176 159 171 166 182 166
脚长y( 码 ) 48 38 40 43 44 37 40 39 46 39
序      号 11 12 13 14 15 16 17 18 19 20
身高x(厘米) 169 178 167 174 168 179 165 170 162 170
脚长y( 码 ) 43 41 40 43 40 44 38 42 39 41
(Ⅰ)若“身高大于175厘米”的为“高个”,“身高小于等于175厘米”的为“非高个”;“脚长大于42码”的为“大脚”,“脚长小于等于42码”的为“非大脚”.请根据上表数据完成下面的2×2联黑框列表:
高  个 非高个 合  计
大  脚
非大脚 12
合  计 20
(Ⅱ) 若按下面的方法从这20人中抽取1人来核查测量数据的误差:将一个标有数字1,2,3,4,5,6的正六面体骰子连续投掷两次,记朝上的两个数字的乘积为被抽取人的序号.试求:
①抽到12号的概率;②抽到“无效序号(超过20号)”的概率.
(Ⅲ) 根据题(1)中表格的数据,若按99.5%的可靠性要求,能否认为脚的大小与身高之间有关系?(可用数据482=2304、582=3364、682=4624、6×14×7×13=7644、5×1×2×12=120)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)国家统计局为研究城市未婚青年的年收入与是否购房之间的关系,随机统计了某市20名未婚青年的年收入(万元)与购房数(套)的数据,如下表:
人名编号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
年收入(万元) 15 5 7 16 14 3 4 6 20 8 4 12 5 6 4 30 3 7 4 6
购房数量(套) 1 0 0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1
(Ⅰ)若当年收入12万元以上(含12万元)为高收入人群,年收入12万元以下为普通收入人群.根据上表完成下面2×2列联表(单位:人):
高收入 普通收入 合计
已购房
未购房
合计 20
(Ⅱ)根据题 (Ⅰ)中表格的数据计算,有多大的把握认为这个城市未婚青年购房与收入高低之间有关系?
参考数据:
①随机变量K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d为样本容量;
②独立性检验随机变量K2的临界值参考表:
P(K2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

同步练习册答案