精英家教网 > 高中数学 > 题目详情
(2011•武昌区模拟)已知各项均为正实数的数列{an}的前n项和为Sn,4Sn=an2+2an-3对于一切n∈N*成立.
(Ⅰ)求a1
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)设bn=
2an-1
Tn
为数列{
an
bn
}
的前n项和,求证Tn<5.
分析:(Ⅰ)直接把n=1代入4Sn=an2+2an-3再结合各项均为正实数即可求出a1
(Ⅱ)直接根据4Sn=an2+2an-3以及4sn-1=an-12+2an-1-3;作差整理求出an-an-1=2,得到数列的规律,即可求出结论;
(Ⅲ)先求出数列{
an
bn
}
的通项公式,在利用错位相减法求和,进而证明结论.
解答:解:(Ⅰ)当n=1时,4S1=4a1=a1 2+2a1-3,,得a12-4a1-3=0,
a1=3或a1=-1,由条件an>0,所以a1=3.      …(2分)
(Ⅱ)当n≥2时,4Sn=an2+2an-3,4sn-1=an-12+2an-1-3;
则4Sn-4Sn-1=an2+2an-3-an-12-2an-1+3,
所以4an=an2+2an-an-12-2an-1an2-2an-an-12-2an-1=0,
(an+an-1)(an-an-1-2)=0,…(4分)
由条件an+an-1>0,所以an-an-1=2,…(5分)
故正数列{an}是首项为3,公差为2的等差数列,
所以an=2n+1.   …(6分)
(Ⅲ)由(Ⅰ)bn=
2an-1
=
22n+1-1
=2n
an
bn
=
2n+1
2n
,…(8分)
∴Tn=
3
2
+
5
22
+…+
2n-1
2n-1
+
2n+1
2n
,①…(9分)
将上式两边同乘以
1
2
,得
1
2
Tn=
3
22
+
5
23
+…+
2n-1
2n
+
2n+1
2n+1
        ②…(10分)
①-②,得
1
2
Tn=
3
2
+
2
22
+
2
23
+…+
2
2n
-
2n+1
2n+1
=
5
2
-
2n+5
2n+1

即Tn=5-
2n+5
2n
.…(12分)
∵n∈N*,∴
2n+5
2n
>0
∴Tn<5.…(13分)
点评:本题主要考察数列与不等式的综合问题.其中涉及到数列的错位相减法求和,数列的错位相减法求和适用于一等差数列乘一等比数列组成的新数列.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•武昌区模拟)已知定义域为(0,+∞)的函数f(x)满足:(1)对任意x∈(0,+∞),恒有f(3x)=3f(x)成立;(2)当x∈(1,3]时,f(x)=3-x.给出如下结论:
①对任意m∈Z,有f(3m)=0;
②函数f(x)的值域为[0,+∞);
③存在n∈Z,使得f(3n+1)=9.
其中所有正确结论的序号是
①②
①②

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•武昌区模拟)已知点P(x,y)与点A(-
2
,0),B(
2
,0)
连线的斜率之积为1,点C的坐标为(1,0).
(Ⅰ)求点P的轨迹方程;
(Ⅱ)过点Q(2,0)的直线与点P的轨迹交于E、F两点,求证
CE
CF
为常数.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•武昌区模拟)设集合M={y|y=(
1
2
)
x
,x≥0},N={y|y=lg x,0<x≤1}
,则集合M∪N=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•武昌区模拟)过三棱柱任意两个顶点作直线,在所有这些直线中任取其中两条,则它们成为异面直线的概率是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•武昌区模拟)已知一次函数f(x)=kx+b(k,b∈R),若-1<f(1)<4,2<f(-1)<3,则2f(-
3
2
)
的取值范围是
(3,
17
2
(3,
17
2

查看答案和解析>>

同步练习册答案