精英家教网 > 高中数学 > 题目详情
(2013•青岛一模)已知函数f(x)=sinωx(ω>0)在区间[0,
π
3
]
上单调递增,在区间[
π
3
3
]
上单调递减;如图,四边形OACB中,a,b,c为△ABC的内角A,B,C的对边,且满足
sinB+sinC
sinA
=
3
-cosB-cosC
cosA

(Ⅰ)证明:b+c=2a;
(Ⅱ)若b=c,设∠AOB=θ,(0<θ<π),OA=2OB=2,求四边形OACB面积的最大值.
分析:(Ⅰ)由题意知
ω
=
3
,解之可得ω,代入已知条件化简可得sinC+sinB=2sinA,再由正弦定理可得b+c=2a;
(Ⅱ)由条件和(Ⅰ)的结论可得△ABC为等边三角形,可得SOACB=S△OAB+S△ABC=
1
2
OA•OBsinθ+
3
4
AB2
,可化简为2sin(θ-
π
3
)+
5
3
4
,由θ的范围可得结论.
解答:解:(Ⅰ)由题意知:
ω
=
3
,解得ω=
3
2
…(2分)
sinB+sinC
sinA
=
2-cosB-cosC
cosA

∴sinBcosA+sinCcosA=2sinA-cosBsinA-cosCsinA,
∴sinBcosA+cosBsinA+sinCcosA+cosCsinA=2sinA,
∴sin(A+B)+sin(A+C)=2sinA…(4分)
∴sinC+sinB=2sinA,
∴b+c=2a…(6分)
(Ⅱ)因为b+c=2a,b=c,所以a=b=c,所以△ABC为等边三角形,
SOACB=S△OAB+S△ABC=
1
2
OA•OBsinθ+
3
4
AB2
…(8分)
=sinθ+
3
4
(OA2+OB2-2OA•OBcosθ)
…(9分)
=sinθ-
3
cosθ+
5
3
4
=2sin(θ-
π
3
)+
5
3
4
,…(10分)
∵θ∈(0,π),∴θ-
π
3
∈(-
π
3
3
)

当且仅当θ-
π
3
=
π
2
,即θ=
6
时取最大值,SOACB的最大值为2+
5
3
4
…(12分)
点评:本题考查两角和与差的三角函数公式,涉及余弦定理和三角形的面积,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•青岛一模)下列函数中周期为π且为偶函数的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛一模)“k=
2
”是“直线x-y+k=0与圆“x2+y2=1相切”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛一模)函数y=21-x的大致图象为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛一模)已知x,y满足约束条件
x2+y2≤4
x-y+2≥0
y≥0
,则目标函数z=-2x+y的最大值是
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛一模)在平面直角坐标系xOy中,已知点A(-1,0),B(1,0),动点C满足:△ABC的周长为2+2
2
,记动点C的轨迹为曲线W.
(Ⅰ)求W的方程;
(Ⅱ)曲线W上是否存在这样的点P:它到直线x=-1的距离恰好等于它到点B的距离?若存在,求出点P的坐标;若不存在,请说明理由;
(Ⅲ)设E曲线W上的一动点,M(0,m),(m>0),求E和M两点之间的最大距离.

查看答案和解析>>

同步练习册答案