精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=$\frac{1}{1-x}$,g(x)=lnx,x0是函数h(x)=f(x)+g(x)的一个零点,若x1∈(1,x0),x2∈(x0,+∞),则(  )
A.h(x1)<0,h(x2)<0B.h(x1)>0,h(x2)>0C.h(x1)>0,h(x2)<0D.h(x1)<0,h(x2)>0

分析 先求出函数的导数,得到函数的单调性,从而得到答案.

解答 解:∵h(x)=f(x)+g(x)=$\frac{1}{1-x}$+lnx,
∴h′(x)=$\frac{1}{{(1-x)}^{2}}$+$\frac{1}{x}$,当x>1时,h′(x)>0,
∴h(x)在(1,+∞)单调递增,
∵x0是函数h(x)的一个零点,若x1∈(1,x0),x2∈(x0,+∞),
∴h(x1)<0,h(x2)>0,
故选:D.

点评 本题考察了函数的单调性问题,考察函数的零点问题,本题是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.在△ABC中,角A,B,C的对边分别为a,b,c,已知2B=A+C,a+$\sqrt{2}$b=2c,求sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=2x3+(4+$\frac{m}{2}$)x2-8x-16,对于任意的t∈[1,2],函数f(x)在区间(t,3)上不单调,则实数m的取值范围是(  )
A.(-$\frac{70}{3}$,+∞)B.(16,+∞)C.(-$\frac{70}{3}$,16)D.(-$\frac{70}{4}$,-16)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知点P为y轴上的动点,点M为x轴上的动点.点F(1,0)为定点,且满足$\overrightarrow{PN}$+$\frac{1}{2}$$\overrightarrow{NM}$=$\overrightarrow{0}$,$\overrightarrow{PM}$•$\overrightarrow{PF}$=0.
(Ⅰ)求动点N的轨迹E的方程.
(Ⅱ)A,B是E上的两个动点,l为AB的中垂线,求当l的斜率为2时,l在y轴上的截距m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知圆O:x2+y2=4,动直线l1:x-ky+2k=0和l2:kx+y-4k=0(k∈R).
(1)试判断直线l1和圆O的位置关系,并说明理由;
(2)已知直线l2与圆O相交,直线l1被圆O截得的弦的中点为M,求动点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.专家通过研究学生的学习行为,发现学生的注意力随着老师讲课时间的变化而变化,讲课开始时,学生的兴趣激增,中间有一段时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散,设f(x)表示学生注意力随时间x(分钟)的变化规律.(f(x)越大,表明学生注意力越大),经过试验分析得知:$f(x)=\left\{\begin{array}{l}-{x^2}+24x+100,0<x≤10\\ 240,10<x<20\\-7x+380,20≤x≤40\end{array}\right.$
(Ⅰ)讲课开始后多少分钟,学生的注意力最集中?能坚持多少分钟?
(Ⅱ)讲课开始后5分钟时与讲课开始后25分钟时比较,何时学生的注意力更集中?
(Ⅲ)一道数学难题,需要讲解24分钟,并且要求学生的注意力至少达到180,那么经过适当安排,老师能否在学生达到所需的状态下讲完这道题目?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在等差数列{an}中,a1=3,a17=35,则公差d=(  )
A.0B.-2C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图所示,在正方体ABCD-A1B1C1D1中,E、F分别是棱DD1、C1D1的中点.
(1)求直线BE和平面ABB1A1所成角θ的正弦值;
(2)证明:B1F∥平面A1BE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知点H(0,-2),椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{3}}}{2}$,F是椭圆E的右焦点,直线HF的斜率为$\frac{{2\sqrt{3}}}{3}$.
(I)求椭圆E的方程;
(Ⅱ)点A为椭圆E的右顶点,过B(1,0)作直线l与椭圆E相交于S,T两点,直线AS,AT与直线x=3分别交于不同的两点M,N,求|MN|的取值范围.

查看答案和解析>>

同步练习册答案