精英家教网 > 高中数学 > 题目详情
14.已知圆C:(x-1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A、B两点.
(1)当l经过圆心C时,求直线l的方程;
(2)当弦AB最短时,写出直线l的方程;
(3)当直线l的倾斜角为45°时,求弦AB的长.

分析 (1)求出圆的圆心,代入直线方程,求出直线的斜率,即可求直线l的方程;
(2)当弦AB被点P平分时,弦AB最短,求出直线的斜率,即可写出直线l的方程;
(3)当直线l的倾斜角为45°时,求出直线的斜率,然后求出直线的方程,利用点到直线的距离,半径,半弦长的关系求弦AB的长.

解答 解:(1)已知圆C:(x-1)2+y2=9的圆心为C(1,0),
因为直线l过点P,C,所以直线l的斜率为2,所以直线l的方程为y=2(x-1),即2x-y-2=0.
(2)当弦AB被点P平分时,弦AB最短,此时l⊥PC,直线l的方程为y-2=-$\frac{1}{2}$(x-2),即x+2y-6=0.
(3)当直线l的倾斜角为45°时,斜率为1,直线l的方程为y-2=x-2,即x-y=0.
圆心到直线l的距离为$\frac{1}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$,圆的半径为3,弦AB的长为:2$\sqrt{9-\frac{1}{2}}$=$\sqrt{34}$.

点评 本题是基础题,考查直线与圆的位置关系,计算直线的斜率,点到直线的距离;直线与圆的特殊位置关系的应用是本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.若不等式ax2+(a-5)x-2>0的解集为{x|-2<x<-$\frac{1}{4}$}
(1)解不等式2x2+(2-a)x-a>0
(2)求b为的范围,使-ax2+bx+3≥0 的解集为R.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知tanα=4$\sqrt{3}$,cos(β-α)=$\frac{13}{14}$,且0<β<α<$\frac{π}{2}$
(1)求cosα的值;
(2)求β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(1)已知直线l1:2x+(m+1)y+4=0与直线l2:mx+3y-2=0平行,求m的值;
(2)已知直线l1:(a+2)x+(1-a)y-1=0与直线l2:(a-1)x+(2a+3)y+2=0互相垂直,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若曲线y=lnx的一条切线是直线y=$\frac{1}{3}$x+b,则实数b的值为-1+ln3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=3x+x,g(x)=log3x+x,h(x)=log3x-3的零点依次为a,b,c,则(  )
A.c<b<aB.a<b<cC.c<a<bD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.圆x2+y2=16上的点到直线x-y=2的距离的最大值是(  )
A.4-$\sqrt{2}$B.16-$\sqrt{2}$C.16+$\sqrt{2}$D.4+$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设f(x)是定义在R上的增函数,且对任意x,都有f(-x)+f(x)=0恒成立,如果实数x,y满足不等式f(x2-6x)+f(y2-4y+12)≤0,那么$\frac{y-2}{x}$的最大值是(  )
A.1B.2C.$2\sqrt{2}$D.$\frac{{\sqrt{2}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.“方程$\frac{x^2}{2-n}$+$\frac{y^2}{n+1}$=1表示焦点在x轴的椭圆”是“-1<n<2”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案