精英家教网 > 高中数学 > 题目详情
已知函数
(1)求证:不论a为何实数,f(x)在(-∞,+∞)上均为增函数;
(2)若f(x)为奇函数,求a的值;
(3)在(2)的条件下,求f(x)在区间[1,5]上的最大值和最小值.
【答案】分析:(1)利用单调性的定义:任取x1<x2,通过作差证明f(x1)<f(x2)即可;
(2)因为f(x)为R上的奇函数,所以f(0)=0,由此可求a值;
(3)在(2)的条件下得到f(x)表达式,利用f(x)的单调性即可求出在区间[1,5]上的最大值和最小值.
解答:(1)证明:f(x)的定义域为R,任取x1<x2
=
∵x1<x2,∴
∴f(x1)-f(x2)<0,即f(x1)<f(x2),
所以,无论a为何实数,f(x)总为增函数.
(2)解:因为f(x)为R上的奇函数,所以f(0)=0,即
解得
(3)由(2)知,
由(1)知f(x)为区间[1,5]上的增函数,
所以f(x)在[1,5]上的最小值为,最大值为f(5)=
点评:本题考查函数的奇偶性、单调性及其应用,定义是解决函数奇偶性、单调性的基本方法.
练习册系列答案
相关习题

科目:高中数学 来源:2013-2014学年安徽省合肥市高三第一次教学质量检测文科数学试卷(解析版) 题型:解答题

已知函数

1求证:时,恒成立;

2时,求的单调区间

 

查看答案和解析>>

科目:高中数学 来源:2014届云南省高二下学期期末考试文科数学试卷(解析版) 题型:解答题

已知函数

(1)求证:

(2)解不等式

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年宁夏高三第五次月考理科数学试卷(解析版) 题型:解答题

(本小题满分l0分)选修4—5:不等式选讲

已知函数

(1)求证:

(2)解不等式.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江西吉安宁冈中学高三下学期第一次月考文科数学试卷(解析版) 题型:解答题

已知函数

(1)求证函数在区间上存在唯一的极值点,并用二分法求函数取得极值时相应的近似值(误差不超过);(参考数据

(2)当时,若关于的不等式恒成立,试求实数的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江西省鹰潭市高三第二次模拟考试理科数学卷 题型:解答题

已知函数

(1)求证函数在区间上存在唯一的极值点,并用二分法求函数取得极值时相应的近似值(误差不超过);(参考数据

(2)当时,若关于的不等式恒成立,试求实数的取值范围.

 

 

查看答案和解析>>

同步练习册答案