精英家教网 > 高中数学 > 题目详情
在数列{an},{bn}中,a1=2,b1=4,且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列(n∈N*).

(1)求a2,a3,a4及b2,b3,b4,由此猜测{an},{bn}的通项公式,并证明你的结论;

(2)证明++…+.

本题主要考查等差数列、等比数列、数学归纳法、不等式等基础知识,考查综合运用数学知识进行归纳、总结、推理、论证等能力.

解:(1)由条件得2bn=an+an+1,an+12=bnbn+1.

由此可得a2=6,b2=9,a3=12,b3=16,a4=20,b4=25.                                     

猜测an=n(n+1),bn=(n+1)2.                                                       

用数学归纳法证明:

①当n=1时,由上可得结论成立.

②假设当n=k时,结论成立,即ak=k(k+1),bk=(k+1)2,

那么当n=k+1时,ak+1=2bk-ak=2(k+1)2-k(k+1)=(k+1)(k+2),

bk+1==(k+2)2.

所以当n=k+1时,结论也成立.

由①②,可知an=n(n+1),bn=(n+1)2对一切正整数都成立.                           

(2).

n≥2时,由(1)知an+bn=(n+1)(2n+1)>2(n+1)n.                                       

++…++++…+

=+(-+-+…+)

=+()<+=.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}和{bn}中,an=an,bn=(a+1)n+b,n=1,2,3,…,其中a≥2且a∈N*,b∈R.
(Ⅰ)若a1=b1,a2<b2,求数列{bn}的前n项和;
(Ⅱ)证明:当a=2,b=
2
时,数列{bn}中的任意三项都不能构成等比数列;
(Ⅲ)设A={a1,a2,a3,…},B={b1,b2,b3,…},试问在区间[1,a]上是否存在实数b使得C=A∩B≠∅.若存在,求出b的一切可能的取值及相应的集合C;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,an=4n-
52
a1+a2+…+an=an2+bn
,其中a,b为常数,则a+2b的值为
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

下面几种推理过程是演绎推理的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,n∈N*,若
an+2-an+1
an+1-an
=k
(k为常数),则称{an}为“等差比数列”.下列是对“等差比数列”的判断:
①k不可能为0   
②等差数列一定是等差比数列
③等比数列一定是等差比数列  
④等差比数列中可以有无数项为0
其中正确的判断是(  )
A、①②B、②③C、③④D、①④

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)由“若a,b,c∈R,则(ab)c=a(bc)”类比,若“
a
b
c
为三个向量,则(
a
b
)•
c
=
a
•(
b
c
)”;
(2)在数列an中,a1=0,an+1=2an+2,猜想an=2n-2
(3)在平面内“三角形的两边之和大于第三边”类比在空间中“四面体的任意三个面的面积之和大于第四面的面积”;
(4)已知(2-x)8=a0+a1x+…+a8x8,则a1+a2+…a8=256
上述四个推理中,得出的结论正确的个数是(  )

查看答案和解析>>

同步练习册答案