精英家教网 > 高中数学 > 题目详情

已知函数f(x)=2|x|-2.
(1)作出函数f(x)的图象;
(2)由图象指出函数的单调区间及单调性(不用证明);
(3)指出函数的值域.

解:(1)由f(x)=2|x|-2=,结合指数函数的图象及函数的图象的平移可作出函数的图象,如同所示4分)
(2)由函数的图象可知,函数,在(0,+∞)上是增函数,在(-∞,0)上是减函数
(3)由函数的图象可知函数的值域为[-1,+∞)
分析:(1)结合指数函数的性质,确定函数的图象
(2)结合函数的图象可求函数的单调区间
(3)结合函数的图象可求函数的值域
点评:本题主要考查了指数函数的图象的变换的应用及识别函数图象的能力,属于基础试题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案