精英家教网 > 高中数学 > 题目详情
已知已知
a
=(cosx,sinx),
b
=(sinx,cosx)
,记f(x)=
a
b
,要得到函数y=sin2x-cos2x的图象,只须将y=f(x)的图象(  )
A.向右平移
π
4
个单位
B.向右平移
π
2
个单位
C.向左平移
π
4
个单位
D.向左平移
π
2
个单位
f(x)=
a
b
=(cosx,sinx)•(sinx,cosx)=sin2x,函数y=sin2x-cos2x=-cos2x=sin(2x-
π
2
),所以要得到函数y=sin2x-cos2x的图象,只须将y=f(x)的图象向右平移
π
4
个单位.
故选A.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知a=sin(-1),b=cos(-1),c=tan(-1),则a、b、c的大小关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(cosα,sinα),
b
=(cosβ,sinβ),则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,1),
b
=(1,cosθ),θ∈(-
π
2
π
2
)

(1)若
a
b
,求θ的值;
(2)若已知sinθ+cosθ=
2
sin(θ+
π
4
)
,利用此结论求|
a
+
b
|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(1+cosα,sinα),
b
=(1-cosβ,sinβ),
c
=(1,0)
,α∈(0,π),β∈(π,2π),向量
a
c
夹角为θ1,向量
b
c
夹角为θ2,且θ12=
π
6
,若△ABC中角A、B、C的对边分别为a、b、c,且角A=β-α.
求(Ⅰ)求角A 的大小; 
(Ⅱ)若△ABC的外接圆半径为4
3
,试求b+c取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=
cosωx,sinωx
b
=
cosωx+
3
sinωx,
3
cosωx-sinωx
(ω>0),函数f(x)=
a
b
的最小正周期为π
(1)求函数f(x)的单调递减区间及对称中心;
(2)求函数f(x)在区间
π
4
π
2
上的最大值与最小值.

查看答案和解析>>

同步练习册答案