精英家教网 > 高中数学 > 题目详情

函数f(x)=x2+x-2的定义域是[-1,2],则值域为________.


分析:由题意函数为二次函数利用导数法求函数值域,因为定义域为闭区间,所以只要求二次函数在定义域中的极值与区间端点值,这几个函数值的大小即可求得函数的值域.
解答:因为函数f(x)=x2+x-2的定义域是[-1,2],由函数f(x)=x2+x-2求导得:f(x)=2x+1,令2x+1=0得:x=-,当时,f(x)<0,函数f(x)在此区间上单调递减;当时,f(x)>0,函数在此区间上单调递增;所以x=-是函数在定义域上的极小值,也应为最小值,而f(-1)=-2,f(2)=22+2-2=4,所以函数在定义域上的值域为:f(x)
故答案为:
点评:此题考查了利用函数的导函数求函数在闭区间上的值域,实质是比较函数在该定义域下的极值与区间端点值等若干函数值的大小.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2-ax+4+2lnx
(I)当a=5时,求f(x)的单调递减函数;
(Ⅱ)设直线l是曲线y=f(x)的切线,若l的斜率存在最小值-2,求a的值,并求取得最小斜率时切线l的方程;
(Ⅲ)若f(x)分别在x1、x2(x1≠x2)处取得极值,求证:f(x1)+f(x2)<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x2+2x在[m,n]上的值域是[-1,3],则m+n所成的集合是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-2x-3的图象为曲线C,点P(0,-3).
(1)求过点P且与曲线C相切的直线的斜率;
(2)求函数g(x)=f(x2)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=-x2+2x,x∈(0,3]的值域为
[-3,1]
[-3,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+
12
x
+lnx的导函数为f′(x),则f′(2)=
5
5

查看答案和解析>>

同步练习册答案