精英家教网 > 高中数学 > 题目详情
Sn为等差数列{an}的前n项和,已知S6<S7,S7>S8,则下列说法正确的是
①②④
①②④

①d<0
②S9<S6
③a7是各项中最大一项
④S7一定是Sn中的最大值.
分析:由已知可得a7>0,a8<0;①d=a8-a7<0,②S9-S6=a7+a8+a9=3a8<0,③由于d<0,所以a1最大,④结合d<0,a7>0,a8<0,可得S7最大;可得答案.
解答:解:由s6<s7,S7>S8可得S7-S6=a7>0,S8-S7=a8<0
所以a8-a7=d<0①正确;
②S9-S6=a7+a8+a9=3a8<0,所以②正确;
③由于d<0,所以a1最大③错误;
④由于a7>0,a8<0,s7最大,所以④正确;
故答案为:①②④
点评:本题考查等差数列的性质,逐个验证是解决问题的关键,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知Sn为等差数列{an}的前n项和,若S1=1,
S4
S2
=4
,则
S6
S4
的值为(  )
A、
9
4
B、
3
2
C、
5
4
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn为等差数列{an}的前项和,Sn=336,a2+a5+a8=6,an-4=30,(n≥5,n∈N*),则n等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn为等差数列{an}的前n项和,S8=4a3,a7=-2,则a9=
-6
-6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•乌鲁木齐一模)设Sn为等差数列{an}的前n项和,若a1=1,a3=5,Sk+2-Sk=36,则k的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn为等差数列{an}的前n项和,若a3+a5+a13=9,则S13=(  )

查看答案和解析>>

同步练习册答案