精英家教网 > 高中数学 > 题目详情
已知A(x1,y1),B(x2,y2)是抛物线y2=4x上相异两点,且满足x1+x2=2.
(Ⅰ)AB的中垂线经过点P(0,2),求直线A的方程;
(Ⅱ)AB的中垂线交x轴于点M,△AMB的面积的最大值及此时直线AB的方程.
方法一:
(I)当AB垂直于x轴时,显然不符合题意,
所以设直线AB的方程为y=kx+b,代入方程y2=4x得:k2x2+(2kb-4)x+b2=0
∴x1+x2=
4-2kb
k2
=2,…(2分)
得:b=
2
k
-k,
∴直线AB的方程为y=k(x-1)+
2
k

∵AB中点的横坐标为1,
∴AB中点的坐标为(1,
2
k
)    …(4分)
∴AB的中垂线方程为y=-
1
k
(x-1)+
2
k
=-
1
k
x+
3
k

∵AB的中垂线经过点P(0,2),故
3
k
=2,得k=
3
2
      …(6分)
∴直线AB的方程为y=
3
2
x-
1
6
,…(7分)
(Ⅱ)由(I)可知AB的中垂线方程为y=-
1
k
x+
3
k

∴M点的坐标为(3,0)…(8分)
因为直线AB的方程为k2x-ky+2-k2=0,
∴M到直线AB的距离d=
|3k2+2-k2|
k4+k2
=
2
k2+1
|k|
      …(10分)
k2x-ky+2-k2=0
y2=4x
k2
4
y2-ky+2-k2=0,
y1+y2=
4
k
,y1y2=
8-2k2
k2

|AB|=
1+
1
k2
|y1-y2|=
4
1+k2
k2-1
k2
            …(12分)
∴S△AMB=4(1+
1
k2
1-
1
k2
,设
1-
1
k2
=t,则0<t<1,
S=4t(2-t2)=-4t3+8t,S′=-12t2+8,由S′=0,得t=
6
3

即k=±
3
时Smax=
16
6
9

此时直线AB的方程为3x±
3
y-1=0.…(15分)
(本题若运用基本不等式解决,也同样给分)
法二:
(1)根据题意设AB的中点为Q(1,t),则kAB=
y2-y1
x2-x1
=
2
t
      …(2分)
由P、Q两点得AB中垂线的斜率为k=t-2,…(4分)
由(t-2)•
2
t
=-1,得t=
4
3
,…(6分)
∴直线AB的方程为y=
3
2
x-
1
6
,…(7分)
(2)由(1)知直线AB的方程为y-t=
2
t
(x-1),…(8分)
AB中垂线方程为y-t=-
t
2
(x-1),中垂线交x轴于点M(3,0),
点M到直线AB的距离为d=
t2+4
t2+4
=
t2+4
,…(10分)
y-t=
2
t
(x-1)
y2=4x
得:4x2-8x+(t2-2)2=0,
∴|AB|=
1+
4
t2
|x1-x2|=
(t2+4)(4-t2)
,x1+x2=2,x1x2=
(t2-2)2
4

∴S=
1
2
|AB|•d=
1
2
(t2+4)2(4-t2)
=
2
4
(t2+4)2(8-2t2)
2
4
(
16
3
)
3
=
16
6
9

当t2=
4
3
时,S有最大值
16
6
9
,此时直线AB方程为3x±
3
y-1=0…(15分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-
12
ax2
+bx(a>0)且f′(1)=0,
(1)试用含a的式子表示b,并求函数f(x)的单调区间;
(2)已知A(x1,y1),B(x2,y2)(0<x1<x2)为函数f(x)图象上不同两点,G(x0,y0)为AB的中点,记AB两点连线斜率为K,证明:f′(x0)≠K.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(x1,y1)、B(x2,y2)是抛物线y=2x2上两个不同点,若x1x2=-
12
,且A、B两点关于直线y=x+m对称,试求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(x1,y1),B(x2,y2)是函数f(x)=
2x
1-2x
,x≠
1
2
-1,x=
1
2
的图象上的任意两点,点M在直线x=
1
2
上,且
AM
=
MB

(1)求x1+x2的值及y1+y2的值;
(2)已知S1=0,当n≥2时,Sn=f(
1
n
)+f(
2
n
)+f(
3
n
)+…+f(
n-1
n
)
,设an=2Sn,Tn为数列{an}的前n项和,若存在正整数c,m,使得不等式
Tm-c
Tm+1-c
1
2
成立,求c和m的值.
(3)在(2)的条件下,设bn=31-Sn,求所有可能的乘积bi•bj(1≤i≤j≤n)的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=loga(ax-1)(a>0,且a≠1)
(1)求此函数的定义域;
(2)已知A(x1,y1),B(x2,y2)为函数y=loga(ax-1)图象上任意不同的两点,若a>1,求证:直线AB的斜率大于0.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•乐山一模)已知A(x1,y1),B(x2,y2)是函数f(x)=
2x
1-2x
,x≠
1
2
-1,x=
1
2
的图象上的两点(可以重合),点M在直线x=
1
2
上,且
AM
=
MB
.则y1+y2的值为
-2
-2

查看答案和解析>>

同步练习册答案