精英家教网 > 高中数学 > 题目详情
(2012•湘潭三模)(优选法选做题)用最小刻度为1的量筒量取液体进行试验,试验范围为(0,21),如果采用分数法则第二个试点为
8(或填13)
8(或填13)
分析:由题知试验范围为(0,21),,区间长度为21,故可把该区间等分成21段,利用分数法选取试点进行计算.
解答:解:由已知试验范围为(0,21),可得区间长度为21,将其等分21段,
利用分数法选取试点:x1=0+
13
21
×(21-0)=13,x2=0+21-13=8,
由对称性可知,第二次试点可以是8或13.
故答案为:8(或填13).
点评:本题考查的是分数法的简单应用.一般地,用分数法安排试点时,可以分两种情况考虑:(1)可能的试点总数正好是某一个(Fn-1).(2)所有可能的试点总数大于某一(Fn-1),而小于(Fn+1-1).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•湘潭三模)已知抛物线y2=2px(p>0)的准线与圆(x-3)2+y2=16相切,则p的值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湘潭三模)已知函数f(x)=(m+
1
m
)lnx+
1
x
-x
,(其中常数m>0)
(1)当m=2时,求f(x)的极大值;
(2)试讨论f(x)在区间(0,1)上的单调性;
(3)当m∈[3,+∞)时,曲线y=f(x)上总存在相异两点P(x1,f(x1))、Q(x2,f(x2)),使得曲线y=f(x)在点P、Q处的切线互相平行,求x1+x2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湘潭三模)若
x-y≤0
x+y≥0
y≤a
,若z=x+2y的最大值为3,则a的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湘潭三模)已知复数z=
2i
1-i
,则复数z为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湘潭三模)“x>1”是“x2-2x+1>0”的(  )

查看答案和解析>>

同步练习册答案