精英家教网 > 高中数学 > 题目详情
(2013•房山区二模)已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的焦点坐标为
2
 , 0)
,离心率为
6
3
.直线y=kx+2交椭圆于P,Q两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)是否存在实数k,使得以PQ为直径的圆过点D(-1,0)?若存在,求出k的值;若不存在,请说明理由.
分析:(Ⅰ)由焦点坐标可得c,由离心率可得a,由a2=b2+c2得b;
(Ⅱ)设P(x1,y1),Q(x2,y2),联立直线方程与椭圆方程消掉y,若存在以PQ为直径的圆过点D(-1,0),则
PD
QD
,即
PD
QD
=0
,根据向量数量积运算、韦达定理即可得关于k的方程,解出k检验是否满足△>0即可;
解答:解:(Ⅰ)由e=
6
3
=
c
a
c=
2
,a2=b2+c2得,a=
3
,b=1,
所以椭圆方程是:
x2
3
+y2=1

(Ⅱ)设P(x1,y1),Q(x2,y2),则y1=kx1+2,y2=kx2+2,
将y=kx+2代入
x2
3
+y2=1
,整理得(3k2+1)x2+12kx+9=0(*),
x1+x2=-
12k
3k2+1
x1x2=
9
3k2+1

以PQ为直径的圆过D(-1,0),
PD
QD
,即
PD
QD
=0

所以
PD
QD
=(x1+1,y1)•(x2+1,y2)=(x1+1)(x2+1)+y1y2
=x1x2+(x1+x2)+y1y2+1=(k2+1)x1x2+(2k+1)(x1+x2)+5=
-12k+14
3k2+1
=0
.            
解得k=
7
6
,此时(*)方程△>0,
所以存在k=
7
6
,使得以PQ为直径的圆过点D(-1,0).
点评:本题考查直线方程、椭圆方程及其位置关系等知识,考查转化思想,解决(Ⅱ)问的关键是先假设存在,然后把问题转化为向量数量积为0求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•房山区二模)对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数y=f(x)的导数,f″(x)是f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且拐点就是对称中心.若f(x)=
1
3
x3-
1
2
x2+
1
6
x+1
,则该函数的对称中心为
(
1
2
,1)
(
1
2
,1)
,计算f(
1
2013
)+f(
2
2013
)+f(
3
2013
)+…+f(
2012
2013
)
=
2012
2012

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•房山区二模)已知函数f(x)=(x2+x-a)e
xa
(a>0).
(Ⅰ)当a=1时,求函数f(x)的单调区间;
(Ⅱ)当x=-5时,f(x)取得极值.
①若m≥-5,求函数f(x)在[m,m+1]上的最小值;
②求证:对任意x1,x2∈[-2,1],都有|f(x1)-f(x2)|≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•房山区二模)一个几何体的三视图如图所示,则这个几何体的表面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•房山区二模)下列四个函数中,既是奇函数又在定义域上单调递增的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•房山区二模)已知数列{an}的前n项和为Sn,a1=1,2Sn=an+1,则Sn=(  )

查看答案和解析>>

同步练习册答案