精英家教网 > 高中数学 > 题目详情
设t>0,数列{an}是首项为t,公差为2t的等差数列,其前n项和为Sn,若对于任意n∈N*
Sn
an
1-t
恒成立,则t的取值范围是______.
∵数列{an}是首项为t,公差为2t的等差数列
∴an=t+(n-1)×2t=2tn-t
∴Sn=
(a1+an)n 
2
=
(t+2tn-t)n
2
=tn2
Sn
an
=
t
n
2tn-t
=
n
2
t
n-
t
1-t
对于任意n∈N*恒成立,
(
n
2n-1
)min
(1-t)t

令g(n)=
n
2n-1
,g'(n)=
2n-1-2n
(2n-1)2
=
-1
(2n-1)2
<0

∴g(n)=
n
2n-1
在[1,+∞)为单调减函数,则当n→∞时,g(n)→
1
2

1
2
(1-t)t
,且t>0解得0<t≤1
故答案为:0<t≤1
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•宿州三模)已知数列{an}的前n项和Sn满足:Sn=t(Sn-an+1)(t>0),且4a3是a1与2a2的等差中项.
(Ⅰ)求t的值及数列{an}的通项公式;
(Ⅱ)设bn=
2n+1an
,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,对一切正整数n,点Pn(n,Sn)都在函数f(x)=x2+2x的图象上.
(1)求数列{an}的通项公式;
(2)若bn=
1
anan+1
,求数列{bn}的前n项和为Bn
(3)设cn=tan(t>0),数列{cn}的前n项和Tn,求
lim
n→∞
Tn+1
Tn
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•宁德模拟)设t>0,数列{an}是首项为t,公差为2t的等差数列,其前n项和为Sn,若对于任意n∈N*
Sn
an
1-t
恒成立,则t的取值范围是
0<t≤1
0<t≤1

查看答案和解析>>

科目:高中数学 来源:2009-2010学年福建省宁德市三县一中高三第二次联考数学试卷(理科)(解析版) 题型:解答题

设t>0,数列{an}是首项为t,公差为2t的等差数列,其前n项和为Sn,若对于任意n∈N*恒成立,则t的取值范围是   

查看答案和解析>>

同步练习册答案