精英家教网 > 高中数学 > 题目详情
数列{an}是正项等比数列,{bn}是等差数列,且a6=b7,则有(  )
分析:由于{bn}是等差数列,可得b4+b10=2b7.已知a6=b7,于是b4+b10=2a6.由于数列{an}是正项等比数列,可得a3+a9=a3(1+q6)2a3q3=2a6.即可得出.
解答:解:∵{bn}是等差数列,
∴b4+b10=2b7
∵a6=b7,∴b4+b10=2a6
∵数列{an}是正项等比数列,∴a3+a9=a3(1+q6)2a3q3=2a6
∴a3+a6≥b4+b10
故选:B.
点评:本题考查了等差数列与等比数列的性质、基本不等式的性质,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正项数列{an}的前n和为Sn,且
Sn
1
4
与(an+1)2的等比中项.
(1)求证:数列{an}是等差数列;
(2)若bn=
an
2n
,数列{bn}的前n项和为Tn,求Tn
(3)在(2)的条件下,是否存在常数λ,使得数列{
Tn
an+2
}
为等比数列?若存在,试求出λ;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•静海县一模)已知正项数列{an}的前n项和为Sn
Sn
1
4
(an+1)2的等比中项.
(Ⅰ)求证:数列{an}是等差数列;
(Ⅱ)若b1=a1,且bn=2bn-1+3,求数列{bn}的通项公式;
(Ⅲ)在(Ⅱ)的条件下,若cn=
an
bn+3
,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

如果一个数列的各项均为实数,且从第二项起开始,每一项的平方与它前一项的平方的差都是同一个常数,则称该数列为等方差数列,这个常数叫做这个数列的公方差.
(1)若数列{bn}是等方差数列,b1=1,b2=3,求b7
(2)是否存在一个非常数数列的等差数列或等比数列,同时也是等方差数列?若存在,求出这个数列;若不存在,说明理由.
(3)若正项数列{an}是首项为2、公方差为4的等方差数列,数列{
1
an
}
的前n项和为Tn,是否存在正整数p,q,使不等式Tn
pn+q
-1
对一切n∈N*都成立?若存在,求出p,q的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列{an}的前n项和为Sn
Sn
1
4
(an+1)2的等比中项.
(1)求证:数列{an}是等差数列;
(2)若b1=a1,且bn=2bn-1+3,求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省常州中学高三最后冲刺综合练习数学试卷4(文科)(解析版) 题型:解答题

如果一个数列的各项均为实数,且从第二项起开始,每一项的平方与它前一项的平方的差都是同一个常数,则称该数列为等方差数列,这个常数叫做这个数列的公方差.
(1)若数列{bn}是等方差数列,b1=1,b2=3,求b7
(2)是否存在一个非常数数列的等差数列或等比数列,同时也是等方差数列?若存在,求出这个数列;若不存在,说明理由.
(3)若正项数列{an}是首项为2、公方差为4的等方差数列,数列的前n项和为Tn,是否存在正整数p,q,使不等式对一切n∈N*都成立?若存在,求出p,q的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案