精英家教网 > 高中数学 > 题目详情
已知a>0,b≥0,
a
2
+b=1
,则2a+4b+1的最小值(  )
分析:直接利用基本不等式可得2a+4b+12
2a4b+1
,然后利用指数运算法则进行化简,将条件代入可得答案,注意等号成立的条件.
解答:解:∵
a
2
+b=1

∴a+2b=2,
∵a>0,b≥0,
∴2a+4b+12
2a4b+1
=2
2a22b+2
=2
2a+2b+2
=8,(当且仅当2a=4b+1即a=2,b=0时取等号)
故选A.
点评:本题考查了基本不等式在最值问题中的应用.在应用基本不等式求最值时要注意“一正、二定、三相等”的判断.运用基本不等式解题的关键是寻找和为定值或者是积为定值,难点在于如何合理正确的构造出定值.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•保定一模)已知a>0,b>0且a≠1,则“logab>0”是“(a-1)(b-1)>0”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,b>0,且三点A(1,1),B(a,0),C(0,b)共线,则a+b的最小值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•松江区二模)已知双曲线C的中心在原点,D(1,0)是它的一个顶点,
d
=(1,
2
)
是它的一条渐近线的一个方向向量.
(1)求双曲线C的方程;
(2)若过点(-3,0)任意作一条直线与双曲线C交于A,B两点 (A,B都不同于点D),求证:
DA
DB
为定值;
(3)对于双曲线Γ:
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
,E为它的右顶点,M,N为双曲线Γ上的两点(都不同于点E),且EM⊥EN,那么直线MN是否过定点?若是,请求出此定点的坐标;若不是,说明理由.然后在以下三个情形中选择一个,写出类似结论(不要求书写求解或证明过程).
情形一:双曲线
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
及它的左顶点;
情形二:抛物线y2=2px(p>0)及它的顶点;
情形三:椭圆
x2
a2
+
y2
b2
=1(a>b>0)
及它的顶点.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•徐州一模)已知a>0,b<0,且a+b≠0,令a1=a,b1=b,且对任意的正整数k,当ak+bk≥0时,ak+1=
1
2
ak-
1
4
bk
bk+1=
3
4
bk
;当ak+bk<0时,bk+1=-
1
4
ak+
1
2
bk
ak+1=
3
4
ak

(1)求数列{an+bn}的通项公式;
(2)若对任意的正整数n,an+bn<0恒成立,问是否存在a,b使得{bn}为等比数列?若存在,求出a,b满足的条件;若不存在,说明理由;
(3)若对任意的正整数n,an+bn<0,且b2n=
3
4
b2n+1
,求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a、b、cR,函数f(x)=ax2+bx+c.若f(0)=f(4)>f(1),则

A、a>0,4a+b=0      B、a<0,4a+b=0   

C、a>0,2a+b=0      D、a<0,2a+b=0

查看答案和解析>>

同步练习册答案