精英家教网 > 高中数学 > 题目详情
过坐标原点O做C:xsinα-ycosα-sinα=0的垂线,垂足为A,P为OA的中点,当α变化时,求P点轨迹的参数方程,并指出它是什么曲线.
分析:先求出垂足A的坐标,其坐标是用参数α来表示的,即为P点轨迹的参数方程,之后消去参数α,即得普通方程,由此知其是什么曲线.
解答:解:∵C的普通方程为.xsinα-ycosα-sinα=0,
∴A点坐标为(sin2α,-cosαsinα),
故当α变化时,P点轨迹的参数方程为
x=
1
2
sinα
y=-
1
2
sinαcosα
(α为参数)
P点轨迹的普通方程为(x-
1
4
)2+y2=
1
16

故P点是圆心为(
1
4
,0)
,半径为
1
4
的圆.
点评:求曲线的轨迹方程是解析几何的基本问题.本题利用的是参数法,参数法:求轨迹方程有时很难直接找到动点的横坐标、纵坐标之间的关系,则可借助中间变量(参数),使x,y之间建立起联系,然而再从所求式子中消去参数,得出动点的轨迹方程.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)已知直线C1
x=1+tcosα
y=tsinα
(t为参数),C2
x=cosθ
y=sinθ
(θ为参数).
(Ⅰ)当α=
π
3
时,求C1与C2的交点坐标;
(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程.
(2)已知正实数a、b、c满足a2+4b2+c2=3.
(I)求a+2b+c的最大值;
(II)若不等式|x-5|-|x-1|≥a+2b+c恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【选做题】在A,B,C,D四小题中只能选做2题,每题10分,共计20分.请在答题卡指定区域内作答,解答时写出文字说明、证明过程或演算步骤.
21-1.(选修4-2:矩阵与变换)
设M是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸压变换.
(1)求矩阵M的特征值及相应的特征向量;
(2)求逆矩阵M-1以及椭圆
x2
4
+
y2
9
=1在M-1的作用下的新曲线的方程.
21-2.(选修4-4:参数方程)
以直角坐标系的原点O为极点,x轴的正半轴为极轴.已知点P的直角坐标为(1,-5),点M的极坐标为(4,
π
2
),若直线l过点P,且倾斜角为 
π
3
,圆C以M为圆心、4为半径.
(1)求直线l关于t的参数方程和圆C的极坐标方程;
(2)试判定直线l和圆C的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多作,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将选题号填入括号中.
(1)选修4一2:矩阵与变换
设矩阵M所对应的变换是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸缩变换.
(Ⅰ)求矩阵M的特征值及相应的特征向量;
(Ⅱ)求逆矩阵M-1以及椭圆
x2
4
+
y2
9
=1
在M-1的作用下的新曲线的方程.
(2)选修4一4:坐标系与参数方程
已知直线C1
x=1+tcosα
y=tsinα
(t为参数),C2
x=cosθ
y=sinθ
(θ为参数).
(Ⅰ)当α=
π
3
时,求C1与C2的交点坐标;
(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程.
(3)选修4一5:不等式选讲
已知a,b,c均为正实数,且a+b+c=1.求
4a+1
+
4b+1
+
4c+1
的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多作,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将选题号填入括号中.
(1)选修4一2:矩阵与变换
设矩阵M所对应的变换是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸缩变换.
(Ⅰ)求矩阵M的特征值及相应的特征向量;
(Ⅱ)求逆矩阵M-1以及椭圆
x2
4
+
y2
9
=1
在M-1的作用下的新曲线的方程.
(2)选修4一4:坐标系与参数方程
已知直线C1
x=1+tcosα
y=tsinα
(t为参数),C2
x=cosθ
y=sinθ
(θ为参数).
(Ⅰ)当α=
π
3
时,求C1与C2的交点坐标;
(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程.
(3)选修4一5:不等式选讲
已知a,b,c均为正实数,且a+b+c=1.求
4a+1
+
4b+1
+
4c+1
的最大值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省宁德市柘荣一中高三(上)第一次月考数学试卷(解析版) 题型:解答题

(1)已知直线(t为参数),(θ为参数).
(Ⅰ)当时,求C1与C2的交点坐标;
(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程.
(2)已知正实数a、b、c满足a2+4b2+c2=3.
(I)求a+2b+c的最大值;
(II)若不等式|x-5|-|x-1|≥a+2b+c恒成立,求实数x的取值范围.

查看答案和解析>>

同步练习册答案