精英家教网 > 高中数学 > 题目详情

已知函数f(x)=数学公式x3-ax2+2x.
(1)讨论f(x)的单调区间;
(2)若f(x)在x∈[1,+∞)上是增函数,求实数a的取值范围.

解:∵函数f(x)=x3-ax2+2x,
∴f'(x)=x2-2ax+2
①当4a2-8≤0时,即-≤a≤时,f'(x)≥0恒成立,可得f(x)在R上是增函数,
②当a≤-或a≥时,f'(x)=0的根是x1=a-,x2=a+
∵当x<a-或x>a+时,f'(x)>0;当a-<x<a+时,f'(x)<0
∴函数f(x)的增区间是(-∞,a-)和(a+,+∞);减区间是(a-,a+);
(2)由(1)可得
①当-≤a≤时,f(x)在[1,+∞)上是增函数,符合题意;
②当a≤-或a≥时,由f(x)在[1,+∞)上是增函数,可得a+≤1,解之得a≤-
综上所述,可得实数a的取值范围是(-∞,].
分析:(1)对函数求导数,得f'(x)=x2-2ax+2,计算出根的判别式△=4a2-8,然后根据-≤a≤时和a≤-或a≥时两种情况加以讨论,得到导数在各个区间上的正负,即可得到f(x)在各种情况下的单调区间;
(2)由(1)可得当-≤a≤时,显然满足条件f(x)在[1,+∞)上是增函数;当a≤-或a≥时,解不等式a+≤1,可得a≤-.由此即可得到符合题意的实数a的取值范围.
点评:本题给出三次多项式函数,求函数的单调区间并讨论在区间[1,+∞)上是增函数的问题.着重考查了利用导数研究函数的单调性和含有字母的二次式的讨论等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案