精英家教网 > 高中数学 > 题目详情
数列{an}中,a1=3,an+1=an+cn(c是常数,n=1,2,3,…),且a1,a2,a3成公比不为1的等比数列.
(1)求c的值;
(2)求{an}的通项公式;
(3)求最小的自然数n,使an≥2013.
(1)a1=3,a2=3+c,a3=3+3c,
∵a1,a2,a3成等比数列,∴(3+c)2=3(3+3c),
解得c=0或c=3.
当c=0时,a1=a2=a3,不符合题意舍去,故c=3.
( 2)当n≥2时,由a2-a1=c,a3-a2=2c,…an-an-1=(n-1)c,
an-a1=[1+2+…+(n-1)]c=
n(n-1)
2
c

又a1=3,c=3,∴an=3+
3
2
n(n-1)=
3
2
(n2-n+2)(n=2,3,…)

当n=1时,上式也成立,
an=
3
2
(n2-n+2)(n∈N*)

(3)由an≥2013得
3
2
(n2-n+2)≥2013
,即n2-n-1340≥0,
∵n∈N*,∴n≥
1+4
335
2
1+4×18
2
=36
1
2

令n=37,得a37=2001<2013,令n=38得a38=2112>2013,
∴使an≥2013成立的最小自然数n=38.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列{an}中,a1=1,an=
12
an-1+1(n≥2),求通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=
1
5
,an+an+1=
6
5n+1
,n∈N*,则
lim
n→∞
(a1+a2+…+an)等于(  )
A、
2
5
B、
2
7
C、
1
4
D、
4
25

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=-60,an+1-an=3,(1)求数列{an}的通项公式an和前n项和Sn(2)问数列{an}的前几项和最小?为什么?(3)求|a1|+|a2|+…+|a30|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=1,对?n∈N*an+2an+3•2n,an+1≥2an+1,则a2=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•长宁区一模)如果一个数列{an}对任意正整数n满足an+an+1=h(其中h为常数),则称数列{an}为等和数列,h是公和,Sn是其前n项和.已知等和数列{an}中,a1=1,h=-3,则S2008=
-3012
-3012

查看答案和解析>>

同步练习册答案