精英家教网 > 高中数学 > 题目详情
(2013•牡丹江一模)执行如图所示的程序框图,则输出的复数z是(  )
分析:由z0的值可知:z0为1的一个3次虚根,再根据判断框可知需要计算的次数即可得出答案.
解答:解:计算可得:z02=-
1
2
-
3
2
i
z03=1,即z0为1的一个3次虚根.
由循环结构可得:当n=2013时,还要计算一次得z=z02014=z0671×3+1=z0
而n←2013+1>2013,
由判断框可知:要跳出循环结构.
故输出的值为z0←-
1
2
+
3
2
i

故选A.
点评:熟练掌握循环结构的功能及1的一个3次虚根的周期性是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•牡丹江一模)在球O内任取一点P,使得P点在球O的内接正方体中的概率是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•牡丹江一模)复数 (1+i)z=i( i为虚数单位),则
.
z
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•牡丹江一模)已知函数f(x)=
1+1nx
x

(1)若函数f(x)在区间(a,a+
1
3
)(a>0)
上存在极值点,求实数a的取值范围;
(2)知果当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围;
(3)求证:[(n+1)!]2>(n+1)en-2+
2
n+1
,这里n∈N*,(n+1)!=1×2×3×…×(n+1),e为自然对数的底数.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•牡丹江一模)已知函数f(x)=xlnx.
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程;
(Ⅲ)设函数g(x)=f(x)-a(x-1),其中a∈R,求函数g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•牡丹江一模)已知四棱锥P-ABCD的三视图如图所示,则四棱锥P-ABCD的四个侧面中面积最大的是(  )

查看答案和解析>>

同步练习册答案