精英家教网 > 高中数学 > 题目详情

求x的值,使(3x2+2x-1)=1

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

14、已知函数f(x)=ax3+3x2-6ax-11,g(x)=3x2+6x+12,和直线m:y=kx+9,又f′(-1)=0.
(1)求a的值;
(2)是否存在k的值,使直线m既是曲线y=f(x)的切线,又是曲线y=g(x)的切线?如果存在,求出k的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x3-3ax2,g(x)=3x2-6x,又函数f(x)在(0,1)单调递减,而在(1,+∞)单调递增.
(1)求a的值;
(2)求M的最小值,使对?x1、x2∈[-2,2],有|f(x1)-g(x2)|≤M成立;
(3)是否存在正实数m,使得h(x)=f(x)+mg(x)在(-2,2)上既有最大值又有最小值?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•河东区一模)已知函数f(x)=ax3+3x2-6ax-11,g(x)=3x2+6x+12,直线m:y=kx+9,又f′(-1)=0.
(1)求函数f(x)=ax3+3x2-6ax-11在区间(-2,3)上的极值;
(2)是否存在k的值,使直线m既是曲线y=f(x)的切线,又是y=g(x)的切线;如果存在,求出k的值;如果不存在,说明理由;
(3)如果对于所有x≥-2的x,都有f(x)≤kx+9≤g(x)成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3+3x2-6ax-11,g(x)=3x3+6x+12,直线l:y=kx+9,又f′(-1)=0
(1)求函数f(x)=ax3+3x2-6ax-11在区间(-2,3)上的极值;
(2)是否存在k的值,使直线l既是曲线y=f(x)的切线,又是曲线y=g(x)的切线,如果存在,求出k的值;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案