精英家教网 > 高中数学 > 题目详情
已知函数 f(x)=log
12
(4-ax)
在区间(-∞,2]上是增函数,则a的取值范围是
0<a<2
0<a<2
分析:根据复合函数的单调性可得 y=4-ax在区间(-∞,2]上是减函数,故a>0.再由x=2时,4-2a>0 可得a<2,综合可得a的取值范围.
解答:解:由于函数y=log
1
2
t
 在定义域内是减函数,∴函数 f(x)=log
1
2
(4-ax)
在区间(-∞,2]上是增函数,
∴y=4-ax在区间(-∞,2]上是减函数,故a>0.
再由x=2时,4-2a>0 可得a<2.
综上可得,0<a<2,
故答案为 (0,2).
点评:本题主要考查对数函数的单调性和特殊点,复合函数的单调性规律,对数函数的定义域,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,则a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定义域上的递减函数,则实数a的取值范围是(  )
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x-1|-a
1-x2
是奇函数.则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-2-x2x+2-x

(1)求f(x)的定义域与值域;
(2)判断f(x)的奇偶性并证明;
(3)研究f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-1x+a
+ln(x+1)
,其中实数a≠1.
(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案