精英家教网 > 高中数学 > 题目详情
甲、乙两人轮流投篮,每人每次投一票.约定甲先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束,设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮互不影响。
(1) 求甲获胜的概率;
(2) 求投篮结束时甲的投篮次数ξ的分布列与期望。
解:设Ak,Bk分别表示甲、乙在第k次投篮投中,
则P(Ak)=,P(Bk)=(k=1,2,3)
(1) 记“甲获胜”为事件C,则P(C)=P(A1)+P()+P()=+=
(2) 投篮结束时甲的投篮次数?的可能值为1,2,3
P(ξ=1)=P(A1)+P()=
P(ξ=2)=P()+P()==
P(ξ=3)=P()==
∴ξ的分布列为:

期望Eξ=1×+2×+3×=
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•重庆)甲、乙两人轮流投篮,每人每次投一球.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为
1
3
,乙每次投篮投中的概率为
1
2
,且各次投篮互不影响.
(Ⅰ) 求甲获胜的概率;
(Ⅱ) 求投篮结束时甲的投篮次数ξ的分布列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•重庆)甲、乙两人轮流投篮,每人每次投一球.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球三次时投篮结束.设甲每次投篮投中的概率为
1
3
,乙每次投篮投中的概率为
1
2
,且各次投篮互不影响.
(Ⅰ)求乙获胜的概率;
(Ⅱ)求投篮结束时乙只投了2个球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两人轮流投篮直至某人投中为止,已知甲投篮每次投中的概率为0.4,乙每次投篮投中的概率为0.6,各次投篮互不影响.设甲投篮的次数为,若乙先投,且两人投篮次数之和不超过4次,求的概率分布.

查看答案和解析>>

科目:高中数学 来源:2012年全国普通高等学校招生统一考试理科数学(重庆卷解析版) 题型:解答题

甲、乙两人轮流投篮,每人每次投一票.约定甲先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮互不影响.[来(Ⅰ) 求甲获胜的概率;(Ⅱ)求投篮结束时甲的投篮次数的分布列与期望

 

查看答案和解析>>

科目:高中数学 来源:2012年全国普通高等学校招生统一考试文科数学(重庆卷解析版) 题型:解答题

甲、乙两人轮流投篮,每人每次投一球,约定甲先投且先投中者获胜,一直每人都已投球3次时投篮结束,设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮互不影响。(Ⅰ)求乙获胜的概率;(Ⅱ)求投篮结束时乙只投了2个球的概率。

 

查看答案和解析>>

同步练习册答案