精英家教网 > 高中数学 > 题目详情
11.(3a+2b)6的展开式中的第3项的二项式系数为15.(用数字作答)

分析 利用通项公式即可得出.

解答 解:T3=${∁}_{6}^{2}(3a)^{4}(2b)^{2}$,
∴展开式中的第3项的二项式系数为${∁}_{6}^{2}$=15.
故答案为:15.

点评 本题考查了二项式定理的通项公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.若函数f(x)=ln(x2+1)的值域为{0,1,2},从满足条件的所有定义域集合中选出2个集合,则取出的2个集合中各有三个元素的概率是(  )
A.$\frac{1}{6}$B.$\frac{1}{7}$C.$\frac{1}{8}$D.$\frac{1}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知曲线$f(x)=\frac{a}{x}(x>0,a>0)$上任一点P(x0,f(x0)),在点P处的切线与x,y轴分别交于A,B两点,若△OAB的面积为4,则实数a的值为(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$过点(3,2),当a2+b2取得最小值时,椭圆的离心率为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,已知AC是圆O的直径,PA⊥平面ABCD,E是PC的中点,∠DAC=∠AOB.
(1)证明:BE∥平面PAD
(2)求证:平面BEO⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{(a+3)^{2}}$=1(a>0)的一条渐近线方程为y=2x,则a=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某几何体的三视图如图所示,则其表面积为(  )
A.B.C.D.12π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.双曲线E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个焦点F到E的渐近线的距离为$\sqrt{3}a$,则E的离心率是(  )
A.$\sqrt{2}$B.$\frac{3}{2}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知等比数列{an}中,a2a4=a5,a4=8,则公比q=2,其前4项和S4=15.

查看答案和解析>>

同步练习册答案