精英家教网 > 高中数学 > 题目详情
已知函数f(x)=(x≠-1),设数列{an}满足a1=1,an+1=f(an),数列{bn}满足bn=|an-3|,Sn=b1+b2+…+bn(n∈N+)

(1)用数学归纳法证明bn;

(2)求证:Sn.

证明:(1)当x≥0时,f(x)=1+≥1,

因为a1=1,所以an≥1(n∈N +)

下面用数学归纳法证明不等式bn

①当n=1时,b1=-1,不等式成立.

②假设当n=k时,不等式成立,即bn,

那么bk+1=|ak+1-|=.

所以,当n=k+1时,不等式也成立.

由①②可知不等式对任意n∈N +都成立.

(2)由(1)知bn

所以Sn=b1+b2+…+bn,

≤(-1)+=(-1)×

<(-1)×.

故对任意n∈N +,Sn.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,则a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定义域上的递减函数,则实数a的取值范围是(  )
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x-1|-a
1-x2
是奇函数.则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-2-x2x+2-x

(1)求f(x)的定义域与值域;
(2)判断f(x)的奇偶性并证明;
(3)研究f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-1x+a
+ln(x+1)
,其中实数a≠1.
(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案