精英家教网 > 高中数学 > 题目详情
(2012•漳州模拟)已知定义在R上的函数f(x)满足:①当x>0时,f(x)>1,②?x、y∈R,f(x+y)=f(x) f(y).数列{an}满足①a1=1,②f(an+1)=f(an) f(1),(n∈N*),Tn=-a12+a22-a32+…+(-1)n
a
2
n
,则T100等于(  )
分析:先根据抽象函数的性质,证明出函数f(x)在R上是单调递增函数.从而f(an+1)=f(an) f(1)=f(an+1),所以an+1=an+1,判断出数列{an}是首项为1,公差为1的等差数列,通项公式为an=n.再利用分组求和法求和即可.
解答:解:对任意x,y∈R,恒有f(x+y)=f(x)•f(y),
可令x=1,y=0 可得 f(0+1)=f(0).f(1)
因为x>0时,有0<f(x)<1,故f(1)>0
所以 f(0)=1
再取x=-y,可得f(0)=f(-y+y)=f(-y)•f(y)=1
所以f(-y)=
1
f(y)
,同理以f(-x)=
1
f(x)

当x<0时,-x>0,根据已知条件得f(-x)>1,即
1
f(x)
>1,
变形得0<f(x)<1.
综上所述任意x∈R,f(x)>0.
设任意的x1,x2∈R,且x1<x2,则x2-x1>0,f(x2-x1)=f(x2)f(-x1)=
f(x2)
f(x1)
>1,f(x2)>f(x1
所以函数f(x)在R上是单调递增函数.
f(an+1)=f(an) f(1)=f(an+1),所以an+1=an+1,数列{an}是首项为1,公差为1的等差数列,通项公式为an=n.
T100=(-12+22)+(-32+42) +…(-992+1002)=3+7+…+199=
(3+199)×50
2
=5050.
故选C.
点评:本题考查抽象函数性质的证明与应用,数列求和.考查推理论证、计算化简能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•漳州模拟)已知函数f(x)=ax+x2-xlna,(a>1).
(I)求证:函数f(x)在(0,+∞)上单调递增;
(Ⅱ)函数y=|f(x)-t|-1有三个零点,求t的值;
(Ⅲ)对?x1,x2∈[-1,1],|f(x1)-f(x2)|≤e-1恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•漳州模拟)复数z满足(1-2i)z=7+i,则复数z的共轭复数z=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•漳州模拟)已知△ABC中,角A、B、C成等差数列,且sinC=2sinA.
(Ⅰ)求角A、B、C;
(Ⅱ)数列{an}满足an=2n|cosnC|,前n项和为Sn,若Sn=340,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•漳州模拟)一个几何体的正视图、侧视图、俯视图都是如图所示正方形及其对角线,则该几何体的体积等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•漳州模拟)如图是某社区工会对当地企业工人月收入情况进行一次抽样调查后画出的频率分布直方图,其中第二组月收入在[1.5,2)千元的频数为300,则此次抽样的样本容量为(  )

查看答案和解析>>

同步练习册答案