精英家教网 > 高中数学 > 题目详情
设函数f(x)=-x3+2x2-x+2.
(1)求函数f(x)的单调区间;
(2)若对任意的x1,x2∈[0,1],|f(x1)-f(x2)|≤M恒成立,求M的最小题.
分析:(1)求出函数f(x)的导数,通过讨论导数的正负,令导数大于零得出函数的单调增区间,令导数小于零得出函数的单调减区间;
(2)原问题可化为函数f(x)在区间[0,1]上的最大值与最小值的差小于或等于M,由(1)的结论,列出函数f(x)在区间[0,1]上的单调性的表格,求出其最小值为f(
1
3
)=
50
27
,最大值为f(0)=f(1)=2,故M≥|2-
50
27
|=
4
27
,故M的最小值为
4
27
解答:解:(1)f(x)=-3x2+4x-1.由f/(x)>0得
1
3
<x<1

f(x)<0得x<
1
3
或x>1

故函数f(x)的单调增区间是(
1
3
,1
),单调递减区间是(-∞,
1
3
),(1,+∞).(7分)
(2)根据(1)的讨论列下表:
x 0 0,
1
3
1
3
(
1
3
,1)
1
f/(x) - 0 +
f(x) 2 极小值
50
27
2
由此可知,函数f(x)在区间[0,1]的最小值为f(
1
3
)=
50
27
,最大值为f(0)=f(1)=2.
对任意的x1x2∈[0,1],|f(x1)-f(x2)|≤|f(x)max-f(x)min|=
4
27

故对任意的x1,x2∈[0,1],|f(x1)-f(x2)|≤M恒成立,则M的最小值为
4
27
.(13分)
点评:本题考查利用导数研究函数的单调性,求函数在闭区间上的最大值和最小值,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为A,若存在非零实数t,使得对于任意x∈C(C⊆A),有x+t∈A,且f(x+t)≤f(x),则称f(x)为C上的t低调函数.如果定义域为[0,+∞)的函数f(x)=-|x-m2|+m2,且 f(x)为[0,+∞)上的10低调函数,那么实数m的取值范围是(  )
A、[-5,5]
B、[-
5
5
]
C、[-
10
10
]
D、[-
5
2
5
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在R上的偶函数,且f(x+2)=f(x)恒成立;当x∈[0,1]时,f(x)=x3-4x+3.有下列命题:
f(-
3
4
) <f(
15
2
)

②当x∈[-1,0]时f(x)=x3+4x+3;
③f(x)(x≥0)的图象与x轴的交点的横坐标由小到大构成一个无穷等差数列;
④关于x的方程f(x)=|x|在x∈[-3,4]上有7个不同的根.
其中真命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案