精英家教网 > 高中数学 > 题目详情
7.在△ABC中,角A,B,C的对边分别为a,b,c,且a=2,$cosC=-\frac{1}{4}$.
(Ⅰ)如果b=3,求c的值;
(Ⅱ)如果$c=2\sqrt{6}$,求sinB的值.

分析 (Ⅰ)由余弦定理c2=a2+b2-2abcosC,能求出c的值.
(Ⅱ)法一:由$cosC=-\frac{1}{4}$,求出sinC=$\frac{\sqrt{15}}{4}$.由正弦定理求出sinA,进而求出cosA,由A+B+C=π,得sinB=sin(A+C)=sinAcosC+cosAsinC,由此能求出结果.
法二:由$cosC=-\frac{1}{4}$,求出sinC=$\frac{\sqrt{15}}{4}$.由余弦定理求出b=4,再由正弦定理能求出sinB的值.

解答 (本小题满分13分)
(Ⅰ)解:由余弦定理c2=a2+b2-2abcosC,…(3分)
得${c^2}=4+9-2×2×3×(-\frac{1}{4})=16$,
解得c=4.…(5分)
(Ⅱ)解:(方法一)由$cosC=-\frac{1}{4}$,C∈(0,π),得$sinC=\sqrt{1-{{cos}^2}C}=\frac{{\sqrt{15}}}{4}$.…(7分)
由正弦定理$\frac{a}{sinA}=\frac{c}{sinC}$,得$sinA=\frac{asinC}{c}=\frac{{\sqrt{10}}}{8}$.…(10分)
所以$cosA=\sqrt{1-{{sin}^2}A}=\frac{{3\sqrt{6}}}{8}$.
因为A+B+C=π,
所以sinB=sin(A+C)=sinAcosC+cosAsinC…(12分)
=$\frac{{\sqrt{10}}}{8}×(-\frac{1}{4})+\frac{{3\sqrt{6}}}{8}×\frac{{\sqrt{15}}}{4}$=$\frac{{\sqrt{10}}}{4}$.…(13分)
(方法二)由$cosC=-\frac{1}{4}$,C∈(0,π),得$sinC=\sqrt{1-{{cos}^2}C}=\frac{{\sqrt{15}}}{4}$.…(7分)
由余弦定理c2=a2+b2-2abcosC,
得$24=4+{b^2}-2×2×b×(-\frac{1}{4})$,
解得b=4,或b=-5(舍).…(10分)
由正弦定理$\frac{b}{sinB}=\frac{c}{sinC}$,得$sinB=\frac{bsinC}{c}=\frac{{\sqrt{10}}}{4}$.…(13分)

点评 本题考查三角形边长的求法,考查正弦定理、余弦定理、三角形面积公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.某公司为了解广告投入对销售收益的影响,在若干地区各投入4万元广告费用,并将各地的销售收益(单位:万元)绘制成如图所示的频率分布直方图.由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.
广告投入x/万元12345
销售收益y/万元23257
(Ⅰ)根据频率分布直方图计算图中各小长方形的宽度;
(Ⅱ)该公司按照类似的研究方法,测得另外一些数据,并整理得到上表:表中的数据显示x与y之间存在线性相关关系,求y关于x的回归方程;
(Ⅲ)若广告投入6万元时,实际销售收益为7.3万元,求残差$\hat e$.
附:${\;}_{b}^{∧}$=$\frac{\sum_{i=1}^{n}{(x}_{i}{-}_{x}^{-}){(y}_{i}{-}_{y}^{-})}{\sum_{i=1}^{n}{(x}_{i}{-}_{x}^{-})^{2}}$=$\frac{\sum_{i=1}^{n}{{x}_{i}y}_{i}-{{n}_{x}^{-}}_{y}^{-}}{\sum_{i=1}^{n}{x}_{i}^{2}-{{n}_{x}^{-}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.行驶中的汽车,在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y(m)与汽车的车速x(km/h)满足下列关系:y=$\frac{nx}{100}$+$\frac{x^2}{400}$(n为常数,且n∈N).
我们做过两次刹车试验,第一次刹车时车速为40km/h,有关数据如图所示,其中$\left\{\begin{array}{l}5<{y_1}<7\\ 13<{y_2}<15.\end{array}\right.$
(1)求出n的值;
(2)要使刹车距离不超过18.4m,则行驶的最大速度应为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x}+1,x<1}\\{{x}^{2}+ax,x>1}\end{array}\right.$,若f(f(0))=4a,则实数a等于(  )
A.$\frac{1}{2}$B.$\frac{4}{5}$C.2D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若四面体的三组对棱分别相等,即AB=CD,AC=BD,AD=BC,给出下列结论:
①四面体每组对棱相互垂直;
②四面体每个面的面积相等;
③连接四面体每组对棱中点的连线相交于一点;
④从四面体每个顶点出发的三条棱两两夹角之和大于90°而小于180°
其中正确结论的序号是②③.(写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知无穷数列{an}的首项为1,数列{bn}满足${b_n}={a_{n+1}}-{a_n},n∈{N^*}$.
(1)若${b_n}={2^n}$,求数列{an}的前n项和;
(2)若bn=bn-1bn+1(n≥2),且${b_1}=1,{b_2}=b({b≠0,-1,-\frac{1}{2}})$,求证:
①数列{bn}的前6项积为定值;
②数列{an}中的任一项都不会在该数列中出现无数次.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,角A,B,C的对边分别为a,b,c,若$acosB=\frac{C}{2},|{\overrightarrow{CA}+\overrightarrow{CB}}|=|{\overrightarrow{CA}-\overrightarrow{CB}}|$,则△ABC为(  )
A.等边三角形B.等腰直角三角形C.锐角三角形D.钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设(1-2x)6=a0+a1x+a2x2+…+a6x6,则a0+a2+a4+a6=(  )
A.1B.-1C.365D.-365

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知θ为第1象限角,且sinθ-cosθ=-$\frac{1}{5}$,求:
(1)sin2θ;
(2)sinθ+cosθ.

查看答案和解析>>

同步练习册答案