精英家教网 > 高中数学 > 题目详情
(理)已知对于任意正整数n,都有a1+a2+…+an=n3,则
lim
n→+∞
(
1
a2-1
+
1
a3-1
+…+
1
an-1
)
=______.
∵当n≥2时,有a1+a2+…+an-1+an=n3
a1+a2+…+an-1=(n-1)3
两式相减,得an=3n2-3n+1,
1
an-1
=
1
3n(n-1)
=
1
3
1
n-1
-
1
n
),
1
a2-1
+
1
a3-1
+…+
1
an-1

=
1
3
(1-
1
2
)+
1
3
1
2
-
1
3
)+…+
1
3
1
n-1
-
1
n
),
=
1
3
(1-
1
n
).
lim
n→+∞
(
1
a2-1
+
1
a3-1
+…+
1
an-1
)

=
lim
n→∞
1
3
(1-
1
n
)

=
1
3

故答案为:
1
3
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(理)已知函数f(x)=x2+aln(x+1).
(1)若函数f(x)在定义域内既有极大值又有极小值,求实数a的取值范围;
(2)证明:a=1时,对于任意的x1,x2∈[1,+∞),且x1≠x2,都有
f(x1)-f(x2)
x1-x2
5
2

(3)是否存在最小的正整数N,使得当n≥N时,不等式ln
n+1
n
n-1
n3
恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•静安区一模)(理)已知对于任意正整数n,都有a1+a2+…+an=n3,则
lim
n→+∞
(
1
a2-1
+
1
a3-1
+…+
1
an-1
)
=
1
3
1
3

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省徐州市高三(上)期中数学试卷(理科)(解析版) 题型:解答题

(理)已知函数f(x)=x2+aln(x+1).
(1)若函数f(x)在定义域内既有极大值又有极小值,求实数a的取值范围;
(2)证明:a=1时,对于任意的x1,x2∈[1,+∞),且x1≠x2,都有
(3)是否存在最小的正整数N,使得当n≥N时,不等式恒成立.

查看答案和解析>>

科目:高中数学 来源:2008年上海市静安区高考数学一模试卷(文理合卷)(解析版) 题型:解答题

(理)已知对于任意正整数n,都有a1+a2+…+an=n3,则=   

查看答案和解析>>

同步练习册答案