精英家教网 > 高中数学 > 题目详情
函数f(x)=-x2+6x-10在区间[0,4]的最大值是
-1
-1
分析:函数f(x)=-x2+6x-10=-(x-3)2-1,图象是抛物线,开口向下,关于直线x=3对称,由此求得函数f(x)=-x2+6x-10在区间[0,4]的最大值.
解答:解:函数f(x)=-x2+6x-10=-(x-3)2-1,图象是抛物线,开口向下,关于直线x=3对称,
故在区间[0,4]上,当x=3时函数f(x)取得最大值为-1,
故答案为-1.
点评:本题主要考查求二次函数在闭区间上的最值,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2-ax+4+2lnx
(I)当a=5时,求f(x)的单调递减函数;
(Ⅱ)设直线l是曲线y=f(x)的切线,若l的斜率存在最小值-2,求a的值,并求取得最小斜率时切线l的方程;
(Ⅲ)若f(x)分别在x1、x2(x1≠x2)处取得极值,求证:f(x1)+f(x2)<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x2+2x在[m,n]上的值域是[-1,3],则m+n所成的集合是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-2x-3的图象为曲线C,点P(0,-3).
(1)求过点P且与曲线C相切的直线的斜率;
(2)求函数g(x)=f(x2)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=-x2+2x,x∈(0,3]的值域为
[-3,1]
[-3,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+
12
x
+lnx的导函数为f′(x),则f′(2)=
5
5

查看答案和解析>>

同步练习册答案