精英家教网 > 高中数学 > 题目详情
给定空间中直线l及平面α,条件“直线l与平面α内两条相交直线都垂直”是“直线l与平面α垂直”的
充要条件
充要条件
条件.
分析:利用线面垂直的判定定理去判断.
解答:解:根据线面垂直的判定定理知当“直线l与平面α内两条相交直线都垂直”一定能得到“直线l与平面α垂直”.
若直线l与平面α垂直,则根据线面垂直的性质可知,直线l与平面α内的所有直线都垂直.
所有“直线l与平面α内两条相交直线都垂直”是“直线l与平面α垂直”充要条件.
故答案为:充要条件.
点评:本题主要考查线面垂直的充要条件,利用线面垂直的判定定理和性质定理是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

13、给定空间中的直线l及平面α,条件“直线l与平面α内无数条直线都垂直”是“直线l与平面α垂直”的(  )条件

查看答案和解析>>

科目:高中数学 来源: 题型:

12、给定下列四个命题:
(1)给定空间中的直线l及平面α,“直线l与平面α内无数条直线垂直”是“直线l与平面α垂直”的充分不必要条件;
(2)已知α,β表示两个不同的平面,m为平面α内的一条直线,则“α⊥β”是“m⊥β”的必要不充分条件;
(3)已知m,n是两条不同的直线,α,β是两个不同的平面,若m∥α,n∥β,m⊥n,则α⊥β;
(4)在三棱柱ABC-A1B1C1中,各棱长相等,侧棱垂直于底面,点D是侧面BB1C1C的中心,则AD与平面BB1C1C所成角的大小是60°.
上述命题中,真命题的序号是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

给定空间中的直线L及平面a,条件“直线L与平面a内无数条直线都垂直”是“直线L与平面a垂直”的
必要非充分
必要非充分
条件

查看答案和解析>>

科目:高中数学 来源:《1.2 充分条件与必要条件》2013年同步练习(解析版) 题型:填空题

给定空间中直线l及平面α,条件“直线l与平面α内两条相交直线都垂直”是“直线l与平面α垂直”的    条件.

查看答案和解析>>

同步练习册答案