数学英语物理化学 生物地理
数学英语已回答习题未回答习题题目汇总试卷汇总练习册解析答案
思路解析:证明整除性问题的关键是“凑项”采用增项、减项、拆项和因式分解等手段,凑出n=k时的情形,从而利用归纳假设使问题获证.
证明:(1)当n=1时,命题显然成立.
(2)设n=k时,an+1+(a+1)2n-1能被a2+a+1整除,则
当n=k+1时,ak+2+(a+1)2k+1=a·ak+1+(a+1)2(a+1)2k-1
=a[ak+1+(a+1)2k-1]+(a+1)2(a+1)2k-1-a(a+1)2k-1
=a[ak+1+(a+1)2k-1]+(a2+a+1)(a+1)2k-1,上式中的两项都能被a2+a+1整除,故n=k+1时命题成立.
科目:高中数学 来源: 题型:
国际学校优选 - 练习册列表 - 试题列表
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区