精英家教网 > 高中数学 > 题目详情

定义在(-1,1)上的函数f(x)满足
(ⅰ)对任意x、y∈(-1,1)有f(x)+f(y)=f(数学公式
(ⅱ)当x∈(-1,0)时,有f(x)>0,试研究f(数学公式)+f(数学公式)+…+f(数学公式)与f(数学公式)的关系.

解:在(ⅰ)中,令x=y=0,可得到f(0)+f(0)=f(0),可得f(0)=0,
令x=-y,可得f(x)+f(-x)=f(0),
则f(x)+f(-x)=0,
故f(x)是奇函数;
又由(ii),当x∈(-1,0)时,有f(x)>0,
当x∈(0,1)时,则-x∈(-1,0)
f(x)=-f(-x)<0,
即当x∈(0,1)时,f(x)<0,
f()=f()+f(-)=f()-f(
则f()+f()+…+f()=[f()-f()]+[f()-f()]+…+[f()-f()]
=f()-f();
∵0<<1,
∴f()<0;
则f()-f()>f(),
故f()+f()+…+f()>f().
分析:在(ⅰ)中,用特殊值法,令x=y=0,x=-y,可得f(x)为奇函数,结合(ii),分析可得当x∈(0,1)时,f(x)<0;进而将f()+f()+…+f()变形为[f()-f()]+[f()-f()]+…+[f()-f()],化简可得其等于f()-f(),由的范围,可得f()<0;即可得答案.
点评:本题考查抽象函数的应用,关键是根据题意,由奇偶性的定义,判断出f(x)的奇偶性,.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
ax+b
1+x2
是定义在(-1,1)上的奇函数,且f(
1
2
)=
2
5

①求函数f(x)的解析式;
②判断函数f(x)在(-1,1)上的单调性并用定义证明;
③解关于x的不等式f(log2x-1)+f(log2x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在(-1,1)上的奇函数,当x∈(0,1)时,f(x)=2x2-2x,求f(x)在(-1,1)上的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若m、n∈[-1,1],m+n≠0,>0.

(1)证明f(x)在[-1,1]上是增函数;

(2)解不等式f(x+)<f().

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省青岛市即墨一中高一(上)期中数学试卷(解析版) 题型:解答题

函数f(x)=是定义在(-1,1)的奇函数,且f()=
(1)确定f(x)的解析式;
(2)判断函数在(-1,1)上的单调性;
(3)解不等式f(t-1)+f(t)<0.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年黑龙江省哈尔滨三中高一(上)段考数学试卷(解析版) 题型:解答题

函数f(x)=是定义在(-1,1)的奇函数,且f()=
(1)确定f(x)的解析式;
(2)判断函数在(-1,1)上的单调性;
(3)解不等式f(t-1)+f(t)<0.

查看答案和解析>>

同步练习册答案