精英家教网 > 高中数学 > 题目详情
x2=1是x=1成立的(  )
A、充要条件B、充分不必要条件C、必要不充分条件D、既不充分又不必要条件
分析:根据充分条件和必要条件的定义进行判断即可.
解答:解:由x2=1得x=1或x=-1,
∴x2=1是x=1成立的必要不充分条件,
故选:C.
点评:本题主要考查充分条件和必要条件的判断,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列命题:
①若函数f(x)=
x3+2x-3
x-1
,(x>1)
ax+1,(x≤1)
在点x=1处连续,则a=4;
②若不等式|x+
1
x
|>|a-2|+1
对于一切非零实数x均成立,则实数a的取值范围是1<a<3;
③不等式(x-2)|x2-2x-8|≥0的解集是x|x≥2.
其中正确的命题有
 
.(将所有真命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+1,g(x)=x,数列{an}满足条件:对于n∈N*,an>0,且a1=1并有关系式:f(an+1)-f(an)=g(an+1),又设数列{bn}满足bn=
log
a
an+1
(a>0且a≠1,n∈N*).
(1)求证数列{an+1}为等比数列,并求数列{an}的通项公式;
(2)试问数列{
1
bn
}是否为等差数列,如果是,请写出公差,如果不是,说明理由;
(3)若a=2,记cn=
1
(an+1)-bn
,n∈N*,设数列{cn}的前n项和为Tn,数列{
1
bn
}的前n项和为Rn,若对任意的n∈N*,不等式λnTn+
2Rn
an+1
<2(λn+
3
an+1
)
恒成立,试求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式x2-1≥a|x-1|对任意的x∈R恒成立,则实数a的取值范围是
(-∞,-2]
(-∞,-2]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•上海模拟)对定义在[0,1]上,并且同时满足以下两个条件的函数f(x)称为G函数.
①对任意的x∈[0,1],总f(x)≥0;
②当x1≥0,x2≥0,x1+x2≤1时,总有f(x1+x2)≥f(x1)+f(x2成立.
已知函数g(x)=x2与h(x)=a&•2x-1是定义在[0,1]上的函数.
(1)试问函数g(x)是否为G函数?并说明理由;
(2)若函数h(x)是G函数,求实数a的值;
(3)在(2)的条件下,讨论方程g(2x-1)+h(x)=m(m∈R)解的个数情况.

查看答案和解析>>

同步练习册答案