精英家教网 > 高中数学 > 题目详情

在四棱锥P-ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,E为PC中点,底面ABCD是直角梯形.AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2.

(Ⅰ)求证:BE∥平面APD;

(Ⅱ)求证:BC⊥平面PBD;

(Ⅲ)设Q为侧棱PC上一点,,试确定λ的值,使得二面角Q-BD-P为45°.

答案:
解析:

  解:(1)取的中点,连结,因为中点,∴,且,在梯形中,,∴

  四边形为平行四边形,∴

  平面平面

  ∴平面

  (2)平面平面,∴平面,∴

  在直角梯形ABCD中,

  ∴

  又由平面,可得

  又,∴平面

  (3)如图,以D为原点建立空间直角坐标系,则

  平面的法向量为

  ,设平面的法向量为

  ,由,∴

  ∴,注意


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知在四棱锥P一ABCD中,底面ABCD是矩形,PA⊥平面ABCD,
PA=AD=1,AB=2,E、F分别是AB、PD的中点.
(Ⅰ)求证:AF∥平面PEC;
(Ⅱ)求PC与平面ABCD所成角的正切值;
(Ⅲ)求二面角P-EC-D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图.在四棱锥P一ABCD中,底面ABCD是正方形,侧棱PD⊥底    面ABCD,PD=DC=2,E是PC的中点.
(1)证明:PA∥平面EDB;
(2)证明:平面PAC⊥平面PDB;
(3)求三梭锥D一ECB的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在四棱锥P一ABCD中,二面角P一AD一B为60°,∠PDA=45°,∠DAB=90°,∠PAD=90°,∠ADC=135°,
(Ⅰ)求证:平面PAB⊥平面ABCD;
(Ⅱ)求PD与平面ABCD所成角的正弦值;
(Ⅲ)求二面角P一CD一B的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P一ABCD中,底面ABCD为菱形,∠BAD=60°,Q为AD的中点.PA=PD=AD=2,点M在线段PC上 PM=
13
PC
(1)证明:PA∥平面MQB;
(2)若平面PAD⊥平面ABCD,求二面角M-BQ-C.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分14分)在四棱锥PABCD中,底面ABCD是正方形,侧棱PD与底面ABCD垂直,PD=DCEPC的中点,作EF于点F(Ⅰ)证明PA平面EBD

(Ⅱ)证明PB平面EFD

(Ⅲ)求二面角的余弦值;

查看答案和解析>>

同步练习册答案