精英家教网 > 高中数学 > 题目详情
已知数列{an}中,a1=1,an+1an-1=anan-1+an2(n∈N+,n≥2),且
an+1
an
=kn+1

(Ⅰ)求证:k=1;
(Ⅱ)设g(x)=
anxn-1
(n-1)!
,f(x)是数列{g(x)}的前n项和,求f(x)的解析式;
(Ⅲ)求证:不等式f(2)<
3
n
g(3)
对n∈N+恒成立.
(I)证明:∵
an+1
an
=kn+1

a2
a1
=a2=k+1

又∵a1=1,an+1an-1=anan-1+an2(n∈N+,n≥2)
则a3a1=a2a1+a22,即
a3
a2
=a2+1
,又
a3
a2
=2k+1
,∴a2=2k.
∴k+1=2k,解得k=1.
(2)∵
an+1
an
=n+1
,∴an=
an
an-1
an-1
an-2
a2
a1
a1
=n•(n-1)…2•1=n!
g(x)=
anxn-1
(n-1)!
=nxn-1
∴当x=1时,f(x)=f(1)=1+2+3+…+n=
n(n+1)
2

当x≠1时,f(x)=1+2x+3x2+…+nxn-1
得xf(x)=x+2x2+3x3+…+(n-1)xn-1+nxn
两式相减得(1-x)f(x)=1+x+x2+…+xn-1-nxn=
1-xn
1-x
-nxn

∴f(x)=
1-xn
(1-x)2
-
nxn
1-x

综上所述:f(x)=
n(n+1)
2
,x=1
1-xn
(1-x)2
-
nxn
1-x
,x≠1

(3)利用(2)中f(x)的表达式,取x=2,
f(2)=
1-2n
(1-2)2
-
n•2n
1-2
=(n-1)•2n+1,
3
n
g(3)=3n
,下面利用数学归纳法证明:不等式f(2)<
3
n
g(3)
对n∈N+恒成立.
易验证当n=1,2,3时不等式恒成立; 
假设n=k(k≥3),不等式成立,即3k>(k-1)2k+1
两边乘以3得:3k+1>3(k-1)2k+3=k•2k+1+1+3(k-1)2k-k2k+1+2
又因为3(k-1)2k-k•2k+1+2=2k(3k-3-2k)+2=(k-3)2k+2>0
所以3k+1>k•2k+1+1+3(k-1)2k-k2k+1+2>k•2k+1+1
即n=k+1时不等式成立.
故不等式恒成立.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1-an=
1
3n+1
(n∈N*)
,则
lim
n→∞
an
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1=
an
1+2an
,则{an}的通项公式an=
1
2n-1
1
2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=
n+1
2
an+1(n∈N*)

(1)求数列{an}的通项公式;
(2)求数列{
2n
an
}
的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=
1
2
Sn
为数列的前n项和,且Sn
1
an
的一个等比中项为n(n∈N*
),则
lim
n→∞
Sn
=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为(  )
A、
n
2n
B、
n
2n-1
C、
n
2n-1
D、
n+1
2n

查看答案和解析>>

同步练习册答案