精英家教网 > 高中数学 > 题目详情
点P为双曲线C1
x2
a2
-
y2
b2
=1(a>0,b>0)
和圆C2:x2+y2=a2+b2的一个交点,且2∠PF1F2=∠PF2F1,其中F1,F2为双曲线C1的两个焦点,则双曲线C1的离心率为(  )
A.
3
B.1+
2
C.
3
+1
D.2
由题意:PF1⊥PF2,且2∠PF1F2=∠PF2F1
∴∠PF1F2=30°,∠PF2F1=60°.
设|PF2|=m,
则|PF1|=
3
m,
|F1F2|=2m.
e=
2c
2a
=
|F1F2|
|PF1| -|PF2|

=
2m
3
m-m

=
3
+1.
故选C.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,点P是双曲线C1
x2
a2
-
y2
b2
=1(a>0,b>0)
和圆C2:x2+y2=a2+b2的一个交点,Q是圆C2在x轴下方的一点,且∠F1QP=60o,其中F1、F2是双曲线C1的两个焦点,则双曲线C1的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,双曲线C1
x2
4
-
y2
b2
=1
与椭圆C2
x2
4
+
y2
b2
=1
(0<b<2)的左、右顶点分别为A1、A2第一象限内的点P在双曲线C1上,线段OP与椭圆C2交于点A,O为坐标原点.
(I)求证:
kAA1+kAA2
kPA1+kPA2
为定值(其中kAA1表示直线AA1的斜率,kAA2等意义类似);
(II)证明:△OAA2与△OA2P不相似.
(III)设满足{(x,y)|
x2
4
-
y2
m2
=1
,x∈R,y∈R}⊆{(x,y)|
x2
4
-
y2
3
>1
,x∈R,y∈R} 的正数m的最大值是b,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点F为双曲线C1
x2
a2
-
y2
b2
=1(a>0,b>0)与抛物线C2:y2=2px(p>0)的公共焦点,M是C1与C2的一个交点,MF⊥x轴,则双曲线C1的离心率为
 

查看答案和解析>>

科目:高中数学 来源:2011年江西省高考数学仿真押题卷11(文科)(解析版) 题型:解答题

如图,双曲线C1与椭圆C2(0<b<2)的左、右顶点分别为A1、A2第一象限内的点P在双曲线C1上,线段OP与椭圆C2交于点A,O为坐标原点.
(I)求证:为定值(其中表示直线AA1的斜率,等意义类似);
(II)证明:△OAA2与△OA2P不相似.
(III)设满足{(x,y)|,x∈R,y∈R}⊆{(x,y)|,x∈R,y∈R} 的正数m的最大值是b,求b的值.

查看答案和解析>>

科目:高中数学 来源:2011年江苏省苏州市红心中学高三摸底数学试卷(解析版) 题型:解答题

如图,点P是双曲线C1和圆C2:x2+y2=a2+b2的一个交点,Q是圆C2在x轴下方的一点,且∠F1QP=60o,其中F1、F2是双曲线C1的两个焦点,则双曲线C1的离心率为   

查看答案和解析>>

同步练习册答案