精英家教网 > 高中数学 > 题目详情
11.如图所示,在四边形ABCD中,AB=AD=CD=1,BD=$\sqrt{2}$,BD⊥CD,将四边形ABCD沿对角线BD折成四面体A′-BCD,使平面A′BD⊥平面BCD,则下列结论正确的是(2)(3).
(1)A′C⊥BD;
(2)∠BA′C=90°;
(3)四面体A′-BCD的体积为$\frac{1}{6}$.

分析 折叠前AB⊥AD,折叠后CD⊥平面A'BD,取BD的中点O,推导出A'O⊥平面BCD,OC不垂直于BD.由此能求出结果.

解答 解:∵折叠前AB=AD=1,BD=$\sqrt{2}$,即AB⊥AD,
折叠后平面A'BD⊥平面BCD,且CD⊥BD,
故CD⊥平面A'BD,取BD的中点O,∵A'B=A'D,
∴A'O⊥BD.又平面A'BD⊥平面BCD,平面A'BD∩平面BCD=BD,
∴A'O⊥平面BCD.
∵CD⊥BD,
∴OC不垂直于BD.假设A'C⊥BD,
∵OC为A'C在平面BCD内的射影,
∴OC⊥BD,矛盾,∴A'C不垂直于BD,故A错误;
∵CD⊥BD,平面A'BD⊥平面BCD,
∴CD⊥平面A'BD,A'C在平面A'BD内的射影为A'D.
∵A'B=A'D=1,BD=$\sqrt{2}$,
∴A'B⊥A'D,A'B⊥A'C,∴∠BA′C=90°,故(2)正确;
∵A′C与平面A'BD不垂直,故A′C与BD不垂直,故(1)错误;
V${\;}_{{A}^{'}-BCD}$=V${\;}_{C-{A}^{'}BD}$=$\frac{1}{3}$${S}_{△{A}^{'}BD}$•CD=$\frac{1}{6}$,故(3)正确.
故答案为:(2)(3).

点评 本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知向量$\overrightarrow{a}$=(2,4),$\overrightarrow{b}$=(x,3),且($\overrightarrow{a}$-$\overrightarrow{b}$)⊥$\overrightarrow{b}$,则x=-1或3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(1)已知椭圆的离心率为$\frac{{\sqrt{2}}}{2}$,准线方程为x=±8,求该椭圆的标准方程
(2)求与双曲线x2-2y2=2有公共渐近线,且过点M(2,-2)的双曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.定义四个数a,b,c,d的二阶积和式$[\begin{array}{l}ab\\ cd\end{array}]=ad+bc$.九个数的三阶积和式可用如下方式化为二
阶积和式进行计算:$[\begin{array}{l}{a_1}{a_2}{a_3}\\{b_1}{b_2}{b_3}\\{c_1}{c_2}{c_3}\end{array}]={a_1}×[\begin{array}{l}{b_2}{b_3}\\{c_2}{c_3}\end{array}]+{a_2}×[\begin{array}{l}{b_1}{b_3}\\{c_1}{c_3}\end{array}]+{a_3}×[\begin{array}{l}{b_1}{b_2}\\{c_1}{c_2}\end{array}]$.已知函数f(n)=$[\begin{array}{l}{n}&{2}&{-9}\\{n}&{1}&{n}\\{1}&{2}&{n}\end{array}]$
(n∈N*),则f(n)的最小值为-21.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=|x-a|,a∈R.
(Ⅰ)当a=2时,解不等式:f(x)≥6-|2x-5|;
(Ⅱ)若关于x的不等式f(x)≤4的解集为[-1,7],且两正数s和t满足2s+t=a,求证:$\frac{1}{s}+\frac{8}{t}≥6$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.对于实数x,用[x]表示不超过x的最大整数,如[0.32]=0,[5.68]=5.若n为正整数,an=[$\frac{n}{4}$],Sn为数列{an}的前n项和,则S40=(  )
A.190B.180C.170D.160

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设α,β是两个不重合的平面,a,b是两条不同的直线,给出下列条件:
①α,β都平行于直线a,b;
②a,b是α内的两条直线,且a∥β,b∥β;
③a与b相交,且都在α,β外,a∥α,a∥β,b∥α,b∥β.
其中可判定α∥β的条件是②③.(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.圆C1:x2+y2-2x=0与圆C2:x2+(y-$\sqrt{3}$)2=4的公切线的条数(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设数列{an}中,a1=3,${a_n}={a_{n-1}}+{3^n}$(n∈N*,n≥2),则an=$\frac{3}{2}({3^n}-1)$.

查看答案和解析>>

同步练习册答案