分析:(I)根据
{an}满足a1=1,an+an+1=,可构造新数列{an-
},为等比数列,求出新数列的通项公式,再根据新数列的通项公式,就可求出{a
n}的通项公式.
(II)利用放缩法证明,先求当k由1到n时,(a
k-a
k+1)(sina
k-sina
k+1)的每一项的范围,可构造函数f(x)=x-sinx,x∈(0,1],利用导数判断函数的单调性,得到a
k-sina
k>a
k+1-sina
k+1,∴0<sina
k-sina
k+1<a
k-a
k+1,再根据又a
k-a
k+1>0,得到,(a
k-a
k+1)(sina
k-sina
k+1)<(a
k-a
k+1)
2=
,最后就可得出结论.
解答:解:(I)∵a
n+a
n+1=
,∴a
n+1-
=-(an-),
∴a
n-
=(a1-)(-1)n-1=0,an=.
(II)设f(x)=x-sinx,x∈(0,1],
| | 当x∈(0,1)时,f′(x)=1-cosx>0,f(x)在(0,1 |
| |
]单调递增.∵1>a
k>a
k+1>0,
∴f(a
k)>f(a
k+1),即a
k-sina
k>a
k+1-sina
k+1,
∴0<sina
k-sina
k+1<a
k-a
k+1,
又a
k-a
k+1>0,∴(a
k-a
k+1)(sina
k-sina
k+1)<(a
k-a
k+1)
2=
,
 |
| k=1 |
n(a
k-a
k+1)(sina
k-sina
k+1)<
| n |
 |
| k=1 |
=<=. 点评:本题考查了数列和函数的综合,综合性强,做题时应认真分析,找到两者之间的联系.