相关习题
 0  146634  146642  146648  146652  146658  146660  146664  146670  146672  146678  146684  146688  146690  146694  146700  146702  146708  146712  146714  146718  146720  146724  146726  146728  146729  146730  146732  146733  146734  146736  146738  146742  146744  146748  146750  146754  146760  146762  146768  146772  146774  146778  146784  146790  146792  146798  146802  146804  146810  146814  146820  146828  266669 

科目: 来源:湖南省长沙县实验中学2010届高三第一次月考理科数学试卷 题型:044

设命题p:关于x的不等式x2+2ax+4>0对一切x∈R恒成立;命题q:函数y=-(4-2a)xR上是减函数.

试确定实数a的取值范围,使p∨q是真命题,p∧q是假命题.

查看答案和解析>>

科目: 来源:湖南省长沙县实验中学2010届高三第一次月考理科数学试卷 题型:044

二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1.

(1)求函数f(x)的解析式;

(2)若当x∈[-1,2]时,函数f(x)的图象与y=2x+m的图象有两个不重合的交点,试确定实数m的取值范围.

查看答案和解析>>

科目: 来源:安徽省安庆市示范高中五校2010届高三第一次联考数学试题 题型:044

设函数f(x)=ax+(a,b为常数),且方程f(x)=有两

个实根为x1=-1,x2=2.

(1)求y=f(x)的解析式;

(2)证明:曲线y=f(x)的图像是一个中心对称图形,并求其对称中心.

查看答案和解析>>

科目: 来源:安徽省安庆市示范高中五校2010届高三第一次联考数学试题 题型:044

已知函数(ω>0周期为2π).

求:当x∈[0,π]时y的取值范围.

查看答案和解析>>

科目: 来源:安徽省安庆市示范高中五校2010届高三第一次联考数学试题 题型:044

已知,试求式子的值

查看答案和解析>>

科目: 来源:安徽省安庆市示范高中五校2010届高三第一次联考数学试题 题型:044

设平面直角坐标系xoy中,设二次函数f(x)=x2+2x+b(x∈R)的图像与两坐标轴有三个交点,经过这三个交点的圆记为C.求:

(1)求实数b的取值范围

(2)求圆C的方程

(3)问圆C是否经过某定点(其坐标与b无关)?请证明你的结论.

查看答案和解析>>

科目: 来源:安徽省安庆市示范高中五校2010届高三第一次联考数学试题 题型:044

请先阅读:在等式cos2x=2cos2x-1(x∈R)的两边求导,得:

由求导法则,得(-sin2x)·2=4cosx·(-sinx),化简得等式:sin2x=2cosx·sinx.

(1)利用上题的想法(或其他方法),试由等式(1+x)n(x∈R,正整数n≥2),证明:n[(1+x)n-1-1]=

(2)对于正整数n≥3,求证:

(i)=0;

(ii)=0;

(iii)

查看答案和解析>>

科目: 来源:安徽省安庆市示范高中五校2010届高三第一次联考数学试题 题型:044

某企业实行裁员增效,已知现有员工a人,每人每年可创纯利润1万元,据评估,在生产条件不变的条件下,每裁员一人,则留岗员工每人每年可多创收0.01万元,但每年需付给下岗工人0.4万元生活费,并且企业正常运行所需人数不得少于现有员工的,设该企业裁员x人后纯收益为y万元.

(1)写出y关于x的函数关系式,并指出x的取值范围;

(2)当140<a≤280时,问该企业裁员多少人,才能获得最大的经济效益?(注:在保证能获得大经济效益的情况下,能少裁员,应尽量少裁)

查看答案和解析>>

科目: 来源:浙江省温州市2010届高三十校联考第一次模拟考试数学(文)试题 题型:044

设点P(x,y)(x≥0)为平面直角坐标系xOy中的一个动点(其中O为坐标原点),点P到定点M(,0)的距离比点Py轴的距离大

(Ⅰ)求点P的轨迹方程:

(Ⅱ)若直线l与点P的轨迹相交于A、B两点,且,点O到直线l的距离为,求直线l的方程.

查看答案和解析>>

科目: 来源:浙江省温州市2010届高三十校联考第一次模拟考试数学(文)试题 题型:044

已知函数f(x)=x3+ax2+bx+5,记f(x)的导数为

(Ⅰ)若曲线f(x)在点(1,f(1))处的切线斜率为3,且时y=f(x)有极值,求函数f(x)的解析式;

(Ⅱ)在(Ⅰ)的条件下,求函数f(x)在[-4,1]上的最大值和最小值;

查看答案和解析>>

同步练习册答案