相关习题
 0  14595  14603  14609  14613  14619  14621  14625  14631  14633  14639  14645  14649  14651  14655  14661  14663  14669  14673  14675  14679  14681  14685  14687  14689  14690  14691  14693  14694  14695  14697  14699  14703  14705  14709  14711  14715  14721  14723  14729  14733  14735  14739  14745  14751  14753  14759  14763  14765  14771  14775  14781  14789  266669 

科目: 来源:不详 题型:单选题

在直角坐标系中,如果两点A(a,b),B(-a,-b)在函数y=f(x)的图象上,那么称[A,B]为函数f(x)的一组关于原点的中心对称点([A,B]与[B,A]看作一组).函数g(x)=
cos
π
2
x  x≤0
log4(x+1),x>0
关于原点的中心对称点的组数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目: 来源:不详 题型:单选题

若对任意的x∈R,函数f(x)满足f(x+2012)=-f(x+2011),且f(2012)=-2012,则f(-1)=(  )
A.1B.-1C.2012D.-2012

查看答案和解析>>

科目: 来源:安徽模拟 题型:单选题

若函数f(x)在R上单调,且对任意x,y∈R,有f(x+y)=f(x)f(y),则f(0)=(  )
A.1B.0C.0或1D.不确定

查看答案和解析>>

科目: 来源:不详 题型:填空题

如果f(x)=
1   |x|≤1
0   |x|>1
,那么f[f(2)]=______;不等式f(2x-1)≥
1
2
的解集是 ______.

查看答案和解析>>

科目: 来源:不详 题型:单选题

函数y=sinx+tanx-|sinx-tanx|在区间(
π
2
2
)内的取值范围是(  )
A.(-∞,0]B.[0,+∞)C.[-2,0]D.[0,2]

查看答案和解析>>

科目: 来源:不详 题型:填空题

y=f(x)有反函数y=f-1(x),又y=f(x+2)与y=f-1(x-1)互为反函数,则f-1(2007)-f-1(1)=______.

查看答案和解析>>

科目: 来源: 题型:

(09年东城区期末理)(13分)

  已知函数.

(Ⅰ)设曲线在点处的切线为,若与圆相切,求 的值;

(Ⅱ)当时,求函数的单调区间.

查看答案和解析>>

科目: 来源:不详 题型:解答题

各项为正数的数列{an} 的前n项和为Sn,且满足:Sn=
1
4
an
2+
1
2
an
+
1
4
(n∈N*
(1)求an
(2)设函数f(n)=
an(n为奇数)
f(
n
2
),(n为偶数)
,cn=f(2n+4(n∈N*),求数列{cn} 的前n项和Tn
(3)设λ为实数,对满足m+n=3k且m≠n的任意正整数m、n、k,不等式Sm+Sn>λSk恒成立,求实数λ的最大值.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如果对于函数f(x)的定义域内任意的x1,x2,都有|f(x1)-f(x2)|≤|x1-x2|成立,那么就称函数f(x)是定义域上的“平缓函数”.
(1)判断函数f(x)=x2-x,x∈[0,1]是否是“平缓函数”;
(2)若函数f(x)是闭区间[0,1]上的“平缓函数”,且f(0)=f(1).证明:对于任意
的x1,x2∈[0,1],都有|f(x1)-f(x2)|≤
1
2
成立.
(3)设a、m为实常数,m>0.若f(x)=alnx是区间[m,+∞)上的“平缓函数”,试估计a的取值范围(用m表示,不必证明).

查看答案和解析>>

科目: 来源:不详 题型:解答题

研究表明:学生的接受能力依赖于老师持续讲课所用的时间.上课开始时,学生兴趣高,接受能力递增,中间有一段时间学生的兴趣不变,接受能力稳定在某个状态,随后学生的注意力开始分散,接受能力下降.分析结果和实验表明:用f(x)表示学生的接受能力,x表示老师讲课所用的时间(单位:分),可有以下的关系式:f(x)=
-0.1x2+2.6x+43,(0<x≤10)
59,(10<x≤16)
-3x+107,(16<x≤30).

(1)开讲后多少分钟,学生的接受能力最强?能维持多少时间?
(2)一个数学难题,需要不低于55的接受能力,上课开始30分钟内,问能达到该接受能力所要求的时间共有多少分钟?

查看答案和解析>>

同步练习册答案