相关习题
 0  147347  147355  147361  147365  147371  147373  147377  147383  147385  147391  147397  147401  147403  147407  147413  147415  147421  147425  147427  147431  147433  147437  147439  147441  147442  147443  147445  147446  147447  147449  147451  147455  147457  147461  147463  147467  147473  147475  147481  147485  147487  147491  147497  147503  147505  147511  147515  147517  147523  147527  147533  147541  266669 

科目: 来源:2012年普通高等学校招生全国统一考试湖南卷数学理科 题型:044

已知函数f(x)=eax-x,其中a≠0.

(1)若对一切x∈R,f(x)≥1恒成立,求a的取值集合.

(2)在函数f(x)的图像上取定两点A(x1,f(x1)),B(x2,f(x2))(x1<x2),记直线AB的斜率为K,问:是否存在x0∈(x1,x2),使>k成立?若存在,求x0的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:2012年普通高等学校招生全国统一考试湖南卷数学理科 题型:044

在直角坐标系xOy中,曲线C1的点均在C2:(x-5)2+y2=9外,且对C1上任意一点M,M到直线x=-2的距离等于该点与圆C2上点的距离的最小值.

(Ⅰ)求曲线C1的方程;

(Ⅱ)设P(x0,y0)(y0≠±3)为圆C2外一点,过P作圆C2的两条切线,分别与曲线C1相交于点A,B和C,D.证明:当P在直线x=-4上运动时,四点A,B,C,D的纵坐标之积为定值.

查看答案和解析>>

科目: 来源:2012年普通高等学校招生全国统一考试湖南卷数学理科 题型:044

某企业接到生产3000台某产品的A,B,C三种部件的订单,每台产品需要这三种部件的数量分别为2,2,1(单位:件).已知每个工人每天可生产A部件6件,或B部件3件,或C部件2件.该企业计划安排200名工人分成三组分别生产这三种部件,生产B部件的人数与生产A部件的人数成正比,比例系数为k(k为正整数).

(1)设生产A部件的人数为x,分别写出完成A,B,C三种部件生产需要的时间;

(2)假设这三种部件的生产同时开工,试确定正整数k的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案.

查看答案和解析>>

科目: 来源:2012年普通高等学校招生全国统一考试湖南卷数学理科 题型:044

已知数列{an}的各项均为正数,记A(n)=a1a2+……+anB(n)=a2a3+……+an+1,C(n)=a3a4+……+an+2,n=1,2,……

(1)若a1=1,a2=5,且对任意n∈N﹡,三个数A(n),B(n),C(n)组成等差数列,求数列{an}的通项公式.

(2)证明:数列{an}是公比为q的等比数列的充分必要条件是:对任意n∈N*,三个数A(n),B(n),C(n)组成公比为q的等比数列.

查看答案和解析>>

科目: 来源:2012年普通高等学校招生全国统一考试湖南卷数学理科 题型:044

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中点.

(Ⅰ)证明:CD⊥平面PAE;

(Ⅱ)若直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目: 来源:2012年普通高等学校招生全国统一考试湖南卷数学理科 题型:044

某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.

已知这100位顾客中的一次购物量超过8件的顾客占55%.

(Ⅰ)确定x,y的值,并求顾客一次购物的结算时间X的分布列与数学期望;

(Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率.

(注:将频率视为概率)

查看答案和解析>>

科目: 来源:2012年普通高等学校招生全国统一考试福建卷数学文科 题型:044

已知函数f(x)=axsinx-(a∈R),且在[0,]上的最大值为

(1)求函数f(x)的解析式;

(2)判断函数f(x)在(0,π)内的零点个数,并加以证明.

查看答案和解析>>

科目: 来源:2012年普通高等学校招生全国统一考试福建卷数学文科 题型:044

如图,等边三角形OAB的边长为8,且其三个顶点均在抛物线E:x2=2py(p>0)上.

(1)求抛物线E的方程;

(2)设动直线l与抛物线E相切于点P,与直线y=-1相较于点Q.证明以PQ为直径的圆恒过y轴上某定点.

查看答案和解析>>

科目: 来源:2012年普通高等学校招生全国统一考试福建卷数学文科 题型:044

某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.

(1)sin213°+cos217°-sin13°cos17°

(2)sin215°+cos215°-sin15°cos15°

(3)sin218°+cos212°-sin18°cos12°

(4)sin2(-18°)+cos248°-sin2(-18°)cos248°

(5)sin2(-25°)+cos255°-sin2(-25°)cos255°

(Ⅰ)试从上述五个式子中选择一个,求出这个常数

(Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广位三角恒等式,并证明你的结论.

查看答案和解析>>

科目: 来源:2012年普通高等学校招生全国统一考试福建卷数学文科 题型:044

如图,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M为棱DD1上的一点.

(1)求三棱锥A-MCC1的体积;

(2)当A1M+MC取得最小值时,求证:B1M⊥平面MAC.

查看答案和解析>>

同步练习册答案