科目: 来源:东北四校2012届高三第一次高考模拟考试数学文科试题 题型:044
已知椭圆M的中心为坐标原点,且焦点在x轴上,若M的一个顶点恰好是抛物线y2=8x的焦点,M的离心率
,过M的右焦点F作不与坐标轴垂直的直线l,交M于A,B两点.
(1)求椭圆M的标准方程;
(2)设点N(t,0)是一个动点,且(
+
)⊥
,求实数t的取值范围.
查看答案和解析>>
科目: 来源:东北四校2012届高三第一次高考模拟考试数学文科试题 题型:044
哈尔滨冰雪大世界每年冬天都会吸引大批游客,现准备在景区内开设经营热饮等食品的店铺若干.根据以往对500名40岁以下(含40岁)人员和500名40岁以上人员的统计调查,有如下一系列数据:40岁以下(含40岁)人员购买热饮等食品的有260人,不购买热饮食品的有240人;40岁以上人员购买热饮等食品的有220人,不购买热饮等食品的有280人,请根据以上数据作出2×2列联表,并运用独立性检验思想,判断购买热饮等食品与年龄(按上述统计中的年龄分类方式)是否有关系?
注:要求达到99.9%的把握才能认定为有关系.
附:K2=![]()
查看答案和解析>>
科目: 来源:东北四校2012届高三第一次高考模拟考试数学文科试题 题型:044
已知斜三棱柱ABC-A1B1C1的底面是正三角形,侧面ABB1A1是边长为2的菱形,且∠A1AB=60°,M是AB的中点,MA1⊥AC.
(1)求证:MA1⊥平面ABC;
(2)求点M到平面AA1C1C的距离.
查看答案和解析>>
科目: 来源:东北四校2012届高三第一次高考模拟考试数学文科试题 题型:044
已知{an}为等比数列,a1=1,a4=27.Sn为等差数列{bn}的前n项和,b1=3,S5=35.
(1)求{an}和{bn}的通项公式;
(2)设Tn=a1b1+a2b2+…+anbn,求Tn.
查看答案和解析>>
科目: 来源:上海市十三校2012届高三第二次联考数学理科试题 题型:044
现代城市大多是棋盘式布局(如北京道路几乎都是东西和南北走向).在这样的城市中,我们说的两点间的距离往往不是指两点间的直线距离(位移),而是实际路程(如图).在直角坐标平面内,我们定义A(x1,y1),B(x2,y2)两点间的“直角距离”为:D(AB)=|x1-x2|+|y1-y2|.
(1)在平面直角坐标系中,写出所有满足到原点的“直角距离”为2的“格点”的坐标.(格点指横、纵坐标均为整数的点)
(2)求到两定点F1、F2的“直角距离”和为定值2a(a>0)的动点轨迹方程,并在直角坐标系内作出该动点的轨迹.
①F1(-1,0),F2(1,0),a=2;
②F1(-1,-1),F2(1,1),a=2;
③F1(-1,-1),F2(1,1),a=4.
(3)写出同时满足以下两个条件的“格点”的坐标,并说明理由(格点指横、纵坐标均为整数的点).
①到A(-1,-1),B(1,1)两点“直角距离”相等;
②到C(-2,-2),D(2,2)两点“直角距离”和最小.
查看答案和解析>>
科目: 来源:上海市十三校2012届高三第二次联考数学理科试题 题型:044
设数列{an}的前n项和为Sn,且满足2an-Sn=1,n∈N*.
(1)求数列{an}的通项公式;
(2)在数列{an}的第两项之间都按照如下规则插入一些数后,构成新数列{bn};an和an+1两项之间插入n个数,使这n+2个数构成等差数列,求b2012的值.
(3)对于(2)中的数列{bn},若bm=an,并求b1+b2+b3+…+bm.(用n表示)
查看答案和解析>>
科目: 来源:上海市十三校2012届高三第二次联考数学理科试题 题型:044
某创业投资公司拟投资开发某种新能源产品,估计能获得10万元到1000万元的投资收益.现准备制定一个对科研课题组的奖励方案:奖金y(单位:万元)随投资收益x(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%.
(1),若建立函数y=f(x)模型制定奖励方案,试用数学语言表述该公司对奖励函数f(x)模型的基本要求,并分析函数
是否符合公司要求的奖励函数模型,并说明原因;
(2)若该公司采用模型函数
作为奖励函数模型,试确定最小的正整数a的值.
查看答案和解析>>
科目: 来源:上海市十三校2012届高三第二次联考数学理科试题 题型:044
如图所示,正方体ABCD-A1B1C1D1的棱长为1,点M、N分别是面对角线A1B和B1D1的中点.
(1)求证:MN⊥AB;
(2)求三棱锥N-MBC的体积.
查看答案和解析>>
科目: 来源:上海市十三校2012届高三第二次联考数学理科试题 题型:044
在△ABC中,角A、B、C所对的边分别为a,b,c.设向量
=(a,cosB),
=(b,cosA),且
∥
,
≠
.求sinA+sinB的取值范围.
查看答案和解析>>
科目: 来源:上海市十三校2012届高三第二次联考数学文科试题 题型:044
现代城市大多是棋盘式布局(如北京道路几乎都是东西和南北走向).在这样的城市中,我们说的两点间的距离往往不是指两点间的直线距离(位移),而是实际路程(如图).在直角坐标平面内,我们定义A(x1,y1),B(x2,y2)两点间的“直角距离”为:D(AB)=|x1-x2|+|y1-y2|.
(1)已知A(-3,-3),B(3,2),求A、B两点的距离D(AB).
(2)求到定点M(1,2)的“直角距离”为2的点的轨迹方程.
并写出所有满足条件的“格点”的坐标(格点是指横、纵坐标均为整数的点).
(3)求到两定点F1、F2的“直角距离”和为定值2a(a>0)的动点轨迹方程,并在直角坐标系内作出该动点的轨迹.
①F1(-1,0),F2(1,0),a=2;
②F1(-1,-1),F2(1,1),a=2;
③F1(-1,-1),F2(1,1),a=4.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com