科目: 来源:2013年普通高等学校招生全国统一考试江苏卷数学 题型:044
设函数f(x)=lnx-ax,g(x)=ex-ax,其中a为实数.
(1)若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值,求a的范围;
(2)若g(x)在(-1+∞)上是单调增函数,试求f(x)的零点个数,并证明你的结论.
查看答案和解析>>
科目: 来源:2013年普通高等学校招生全国统一考试江苏卷数学 题型:044
设{an}是首项为a,公差为d的等差数列(d≠0),Sn是其前n项和.记
,n∈N*,其中c为实数.
(1)若c=0,且b1,b2,b4成等比数列,证明:Snk=n2Sk(k,n∈N*);
(2)若{bn}是等差数列,证明:c=0.
查看答案和解析>>
科目: 来源:2013年普通高等学校招生全国统一考试江苏卷数学 题型:044
如图,游客从某旅游景区的景点处下山至C处有两种路径.一种是从沿A直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.
现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50 m/min.在甲出发2 min后,乙从A乘缆车到B,在B处停留1 min后,再从B匀速步行到C.假设缆车匀速直线运动的速度为130 m/min,山路AC长为1260 m,经测量,
,
.
(1)求索道AB的长;
(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?
(3)为使两位游客在C处相互等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?
查看答案和解析>>
科目: 来源:2013年普通高等学校招生全国统一考试江苏卷数学 题型:044
如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4.设圆的半径为1,圆心在l上.
(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程;
(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.
查看答案和解析>>
科目: 来源:2013年普通高等学校招生全国统一考试江苏卷数学 题型:044
如图,在三棱锥S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB.过A作AF⊥SB,垂足为F,点E,G分别是侧棱SA,SC的中点.
求证:(1)平面EFG∥平面ABC;
(2)BC⊥SA.
查看答案和解析>>
科目: 来源:2013年普通高等学校招生全国统一考试(四川卷)数学(理科) 题型:044
已知函数
,其中a是实数.设A(x1,f(x1)),B(x2,f(x2))为该函数图象上的两点,且x1<x2.
(Ⅰ)指出函数f(x)的单调区间;
(Ⅱ)若函数f(x)的图象在点A,B处的切线互相垂直,且x2<0,求x2-x1的最小值;
(Ⅲ)若函数f(x)的图象在点A,B处的切线重合,求a的取值范围.
查看答案和解析>>
科目: 来源:2013年普通高等学校招生全国统一考试(四川卷)数学(理科) 题型:044
已知椭圆C:
=1,(a>b>0)的两个焦点分别为F1(-1,0),F2(1,0),且椭圆C经过点
.
(Ⅰ)求椭圆C的离心率;
(Ⅱ)设过点A(0,2)的直线l与椭圆C交于M、N两点,点Q是线段MN上的点,且
,求点Q的轨迹方程.
查看答案和解析>>
科目: 来源:2013年普通高等学校招生全国统一考试(四川卷)数学(理科) 题型:044
如图,在三棱柱ABC-A1B1C中,侧棱AA1⊥底面ABC,AB=AC=2AA1,∠BAC=120°,D,D1分别是线段BC,B1C1的中点,P是线段AD的中点.
(Ⅰ)在平面ABC内,试作出过点P与平面A1BC平行的直线l,说明理由,并证明直线l⊥平面ADD1A1;
(Ⅱ)设(Ⅰ)中的直线l交AB于点M,交AC于点N,求二面角A-A1M-N的余弦值.
查看答案和解析>>
科目: 来源:2013年普通高等学校招生全国统一考试(四川卷)数学(理科) 题型:044
某算法的程序框图如图所示,其中输入的变量x在1,2,3,…,24这24个整数中等可能随机产生.
(Ⅰ)分别求出按程序框图正确编程运行时输出y的值为i的概率Pi(i=1,2,3);
(Ⅱ)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n次后,统计记录了输出y的值为i(i=1,2,3)的频数.以下是甲、乙所作频数统计表的部分数据.
![]()
当n=2100时,根据表中的数据,分别写出甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率(用分数表示),并判断两位同学中哪一位所编写程序符合算法要求的可能性较大;
(Ⅲ)按程序框图正确编写的程序运行3次,求输出y的值为2的次数ξ的分布列及数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com