科目: 来源: 题型:解答题
某建筑公司要在一块宽大的矩形地面(如图所示)上进行开发建设,阴影部分为一公共设施建设不能开发,且要求用栏栅隔开(栏栅要求在一直线上),公共设施边界为曲线
的一部分,栏栅与矩形区域的边界交于点
,交曲线于点
,设
.![]()
(1)将△
(
为坐标原点)的面积
表示成
的函数
;
(2)若在
处,
取得最小值,求此时
的值及
的最小值.
查看答案和解析>>
科目: 来源: 题型:解答题
已知函数
.
(1) 当
时,函数
恒有意义,求实数a的取值范围;
(2) 是否存在这样的实数a,使得函数
在区间
上为增函数,并且
的最大值为1.如果存在,试求出a的值;如果不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:解答题
某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为
立方米,且
.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为
千元,设该容器的建造费用为
千元.![]()
(Ⅰ)写出
关于
的函数表达式,并求该函数的定义域;
(Ⅱ)求该容器的建造费用最小时的
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com