科目: 来源: 题型:解答题
设
,
, 其中
是不等于零的常数,
(1)、(理)写出
的定义域(2分);
(文)
时,直接写出
的值域(4分)
(2)、(文、理)求
的单调递增区间(理5分,文8分);
(3)、已知函数![]()
,定义:![]()
,![]()
.其中,
表示函数
在
上的最小值,
表示函数
在![]()
上的最大值.例如:
,
,则
,
,
(理)当
时,设
,不等式![]()
恒成立,求
的取值范围(11分);
(文)当
时,
恒成立,求
的取值范围(8分);
查看答案和解析>>
科目: 来源: 题型:解答题
(本小题满分14分)
已知:函数
是定义在
上的偶函数,当
时,
为实数).
(1)当
时,求
的解析式;
(2)若
,试判断
上的单调性,并证明你的结论;
(3)是否存在
,使得当
有最大值1?若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:解答题
(本小题8分)经过调查发现,某种新产品在投
放市场的30天中,前20天其价格直线上升,后10天价格呈直线下降趋势。现抽取其中4天的价格如下表所示:
| 时间 | 第4天 | 第12天 | 第20天 | 第28天 |
| 价格 (千元) | 34 | 42 | 50 | 34 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com